EPITA

Mathématiques

Examen S2-B4-ALM

Applications linéaires et matrices

durée : 2 heures

Juin 2024

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 30 points. La note sera ramenée à une note sur 20 par une règle de trois.
Consignes:
 Lire le sujet en entier avant de commencer. Il y a en tout 5 exercices. La rigueur de votre rédaction sera prise en compte dans la note.
— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1: inversion de matrice (4 points)

Soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & -1 & 2 \\ -1 & 1 & -1 \end{pmatrix}$.
On admet que A est inversible. Trouvez A^{-1} . Vous ferez apparaître tous les détails de vos calculs.

On

Exercice 2 : application linéaire (9 points)

co	nsidère l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ P & \longmapsto & (P(0), P'(-1)) \end{array} \right.$
1.	Donner la matrice de f dans la base canonique de $\mathbb{R}_2[X]$ au départ et la base canonique de \mathbb{R}^2 à l'arrivée.
2.	Montrer proprement que la dimension du noyau de f est égale à 1, en précisant une de ses bases.
3.	Énoncer rigoureusement le théorème du rang et en déduire la dimension de l'image de f .
4.	f est-elle injective? Justifier.
5.	f est-elle surjective? Justifier.

Exercice 3: changement de bases (3 points)

On considère l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}_1[X] \\ (a,b) & \longmapsto & (-3a+5b)X-4a+6b \end{array} \right.$ 1. Donner la matrice de f dans la base canonique de \mathbb{R}^2 au départ et la base canonique de $\mathbb{R}_1[X]$ à l'arrivée. 2. Donner la matrice de f dans la base $\mathcal{B}_1=((1,1),(2,1))$ au départ et la base $\mathcal{B}_2=(X+1,X+2)$ à l'arrivée. 3. Sachant que la base d'arrivée est la base canonique de $\mathbb{R}_1[X]$, qu'a-t-on pris comme base de départ pour obtenir $\begin{pmatrix} 2 & -4 \\ 2 & -3 \end{pmatrix}$ comme matrice de f dans ces bases? Exercice 4: projection (8 points) On considère l'application linéaire $p: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (0,x+y) \end{array} \right.$ On admet que : Ker(p) = Vect((1, -1)) et Im(p) = Vect((0, 1)). 1. Dans le quadrillage situé page suivante, dessiner \mathbb{R}^2 , $\operatorname{Ker}(p)$ et $\operatorname{Im}(p)$. 2. En quoi votre dessin montre-t-il que $\operatorname{Ker}(p) \oplus \operatorname{Im}(p) = \mathbb{R}^2$?

3. So Qı								u_1, u_2 n déc											2.										
	 •••	 			 	• • •										 			 										
								-1, -											tro	uve	r u	1, ι	l_2 .	Lire	gra	aph	iqu	eme	ent le
o. V€																													
	 	 			 										• • •	 			 										
• •	 • • •	 	• • •	• • •	 	• • •	• • •		• • •					• • •	• • •	 		• • •	 		• • •		• • • •						
• •	 • • •	 	• • •	• • •	 	• • •	• • •		• • •	• • •		• • •	• • •	• • •	• • •	 	• • •	• • •	 	• • •	• • •		• • • •	• • • •					
																												+	
										_																		4	
																												+	
																												+	-
																												_	
											_																	+	
																												+	_
																												+	
																												+	\neg
																												_	
_										_																		\dashv	_
-																												+	
-										+	+															-		\dashv	\dashv
																										-		-	_

[N'oubliez pas de tourner la page. Dernier exercice page suivante.]

Exercice 5: matrices (6 points)

Les deux questions sont indépendantes.

1. Soit f	$\in \mathscr{L}(\mathbb{R}_2[X])$	dont la	matrice of	dans la	base	canonique	au	départ	et à l	l'arrivée	est
-------------	------------------------------------	---------	------------	---------	------	-----------	----	--------	--------	-----------	-----

$$A = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 0 & 2 & 4 \\ 1 & 2 & 1 \end{array}\right)$$

(a)	(a) Soit $P = -3 + 2X - 4X^2$. Trouver U la matrice colonne formée des coordonnées de P dans la base canonique $\mathbb{R}_2[X]$.												
(b)) En vous aidant d'un produit matriciel, calculer $f(P)$.												
co	our $u = (x, y, z) \in \mathbb{R}^3$, on note X la matrice colonne formée des coordonnées de u dans la base \mathcal{B} et X' la matrice blonne formée des coordonnées de u dans la base \mathcal{B}') Écrire la matrice de passage P de \mathcal{B} vers \mathcal{B}' .												
(b)) Soit $u \in \mathbb{R}^3$ tel que $u = 2u_1 + 3u_2 - 4u_3$. Entre X et X' , laquelle est-elle immédiate à donner? Donner la et trouver l'autre via un calcul matriciel . Vérifier ensuite votre calcul « à la main ».												