EPITA

Mathematics

Final exam

June 2021

Duration: 3 hours

Name:

First name:

Class:

MARK:

The marking system is given for a grading scale from 0 to 30 . The final mark will be re-scaled from 0 to 20.

Instructions:

- Documents and pocket calculators are not allowed.
- Write your answers on the stapled sheets provided for answering. No other sheet will be corrected.
- Please, do not use lead pencils for answering.

For the whole exam, each answer must be accurately justified.

Exercise 1 (4,5 points)

Let $E=\mathbb{R}_{2}[X]$.
a. For each of the families below, say whether it is a basis of E or not.

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{P_{1}(X)=2 X+1, P_{2}(X)=X^{2}+X+2, P_{3}(X)=X^{2}+X+1, P_{4}(X)=2 X^{2}+3\right\} \\
& \mathcal{F}_{2}=\left\{Q_{1}(X)=X^{2}+2, Q_{2}(X)=X^{2}+4 X, Q_{3}(X)=X^{2}+3 X+2\right\} \\
& \mathcal{F}_{3}=\left\{R_{1}(X)=-X^{2}+2, R_{2}(X)=X^{2}-4 X, R_{3}(X)=X^{2}-2 X-1\right\}
\end{aligned}
$$

b. Find the coordinates of the polynomial $P(X)=2 X^{2}+X+8$ in each basis that you have found at question a.

Exercise 2 (2,5 points)

Let $(a, b, c) \in \mathbb{R}^{3}$ and $\varphi:\left\{\begin{array}{lll}\mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & a x^{2}+b x+c\end{array}\right.$
Determine necessary and sufficient conditions on (a, b, c) for φ to be a linear map. Prove your answer.

Exercise 3 (5 points)

Consider the vector space $\mathbb{R}^{\mathbb{R}}$ containing all the functions from \mathbb{R} to \mathbb{R}, and the following subsets of $\mathbb{R}^{\mathbb{R}}: \mathcal{E}$ the set of even functions $(\forall x \in \mathbb{R}, f(-x)=f(x))$ and \mathcal{O} the set of odd functions $(\forall x \in \mathbb{R}, f(-x)=-f(x))$.
a. Show that \mathcal{E} is a linear subspace of $\mathbb{R}^{\mathbb{R}}$. (We accept without proof that \mathcal{O} is a linear subspace of $\mathbb{R}^{\mathbb{R}}$ too)
b. Using an example, show that $\mathcal{E} \cup \mathcal{O} \neq \mathbb{R}^{\mathbb{R}}$
c. Let $f \in \mathbb{R}^{\mathbb{R}}$ and consider the two following functions:
$f_{e}:\left\{\begin{array}{lll}\mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x)+f(-x)}{2}\end{array}\right.$ and $f_{o}:\left\{\begin{array}{lll}\mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{f(x)-f(-x)}{2} .\end{array}\right.$
Show that f_{e} is even and that f_{o} is odd. Compute $f_{e}+f_{o}$.
d. Show that \mathcal{E} and \mathcal{O} are supplementary in $\mathbb{R}^{\mathbb{R}}$.

Exercise 4 (4 points)

Consider the linear map $f:\left\{\begin{array}{lll}\mathbb{R}^{3} & \longrightarrow \mathbb{R}[X] \\ (a, b, c) & \longmapsto & (a+b) X^{4}+(2 a-c) X^{2}+(a+b+c)\end{array}\right.$
a. Determine $\operatorname{Ker} f, \operatorname{dim} \operatorname{Ker} f$ and $\operatorname{dim} \operatorname{Im} f$.
b. Is f injective?
c. Is f surjective?

Exercise 5 (4 points)

Let $g \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{4}\right)$ be the linear map associated to the matrix $\left(\begin{array}{ccc}1 & 0 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 1\end{array}\right)$ in the standard bases as input and output bases.
Let $\mathcal{B}_{3}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis of \mathbb{R}^{3} and \mathcal{B}_{4} the standard basis of \mathbb{R}^{4}.
Consider the two bases: $\mathcal{D}_{3}=\left\{u_{1}, u_{2}, u_{3}\right\}$ basis of \mathbb{R}^{3} where $u_{1}=(1,-1,0), u_{2}=(1,0,1), u_{3}=(0,1,-1)$ and $\mathcal{D}_{4}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ basis of \mathbb{R}^{4} where $v_{1}=(0,0,0,1), v_{2}=(1,0,0,1), v_{3}=(1,2,1,2), v_{4}=(0,3,0,3)$.
a. What are the images of the vectors of \mathcal{B}_{3} by g ?
b. Let $(x, y, z) \in \mathbb{R}^{3}$, compute $g((x, y, z))$.
c. Determine the matrix of g in bases \mathcal{B}_{3} as input basis and \mathcal{D}_{4} as output basis.
d. Determine the matrix of g in bases \mathcal{D}_{3} as input basis and \mathcal{D}_{4} as output basis.

Exercise 6 (4 points)

Let $h:\left\{\begin{array}{lll}\mathbb{R}^{3} & \longrightarrow & \mathbb{R}^{3} \\ (x, y, z) & \longmapsto & (2 x+3 y+z, x-z, x+y)\end{array}\right.$
a. Determine the matrix of M associated to h in the standard basis as input and output basis.
b. Let C_{1}, C_{2}, C_{3} be the column vectors of this matrix. Is the family $\left\{C_{1}, C_{2}, C_{3}\right\}$ linearly independent? If it is not, find a maximal independent subfamily.
c. Deduce $\operatorname{Im} h, \operatorname{rank}(h)$ and Ker h.

Exercise 7 (3 points)

Let \mathcal{B} be the standard basis of \mathbb{R}^{3} and $\mathcal{B}^{\prime}=\{(1,3,-3) ;(6,2,-7) ;(1,0,-1)\}$ another basis of \mathbb{R}^{3}.
Let f be the linear map associated to the matrix $P=\left(\begin{array}{rrr}1 & 6 & 1 \\ 3 & 2 & 0 \\ -3 & -7 & -1\end{array}\right)$ in the standard basis as input and output basis.
a. Without doing any computations, what can you say about the rank of f ? How is the matrix P called?
b. Determine P^{-1} the inverse matrix of P, then check your final result.

Exercise 8 (4 points)

Let $f:\left\{\begin{array}{lll}\mathbb{R}^{3} & \longrightarrow & \mathbb{R}^{3} \\ (x, y, z) & \longmapsto & \left(\frac{1}{2}(x-z), y, \frac{1}{2}(z-x)\right)\end{array}\right.$
a. Show that f is a projector.
b. Determine $\operatorname{Ker} f$ and $\operatorname{Im} f$ as spanned linear subspaces (using the Span notation), then find a basis \mathcal{B}_{1} of $\operatorname{Ker} f$ and a basis \mathcal{B}_{2} of $\operatorname{Im} f$.
c. We accept without proof that the union of the vectors from the two bases $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ is a basis of \mathbb{R}^{3}. Find the matrix of f in basis \mathcal{B} as input and output basis.

