EPITA

Mathematics

Final exam (S2)

June, 2017

First name :	
Class:	
GRADE:	

Name:

Exercise 1 (2 points)

Let $A = \begin{pmatrix} -1 & 3 & -1 \\ 3 & -5 & 2 \\ -1 & 2 & -1 \end{pmatrix}$. Determine the matrix A^{-1} (check the final result carefully on your draft).

Exercise 2 (4,5 points)

Expand into partial fractions of $\mathbb{R}(X)$ the following rational fractions :

1.
$$F(X) = \frac{X^2 + X + 1}{(X+1)(X-1)(X-3)}$$

2.
$$G(X) = \frac{X^3 - X - 1}{(X+1)(X+3)}$$

3.
$$H(X) = \frac{X^2 - X - 1}{(X - 2)(X^2 + 1)}$$

				,

Exercise 3 (3 points)

1. Let $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}^2$ be the linear map defined for any $P \in \mathbb{R}_2[X]$ by f(P(X)) = (P(1), P(2)).

Determine the matrix of f in the standard bases of $\mathbb{R}_2[X]$ and \mathbb{R}^2 .

2. Let
$$u: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathscr{M}_2(\mathbb{R}) \\ \\ (x,y,z) & \longmapsto & \left(\begin{array}{ccc} x+y & y+z \\ x+z & 0 \end{array} \right) \end{array} \right.$$

Determine the matrix of u in the standard bases of \mathbb{R}^3 and $\mathscr{M}_2(\mathbb{R})$.

Exercise 4 (3 points)

Let E be a vector space over \mathbb{R} and $f \in \mathcal{L}(E)$. As usual, we denote $f^2 = f \circ f$.

1. Show that $Ker(f) \subset Ker(f^2)$.

2. Show that $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$.

3. Show that : $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0_E\} \iff \operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.

We are working in $\mathbb{R}_2[X]$. For each of the following questions, you must justify your answer.

1. Let $\mathscr{B}_1 = \{X^2 + X; X + 3\}$. Is it a spanning family of $\mathbb{R}_2[X]$?

3. Let $\mathscr{B}_3=\left\{1;X+1;X^2+2X\right\}$. Is it a basis of $\mathbb{R}_2[X]$?

Exercise 6 (3 points)

Let a and b be two real numbers, $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$ and $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

1. Calculate J^2 and J^k for $k \ge 3$.

2. Express A as a function of I, J and J^2 where $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3. Deduce A^n for any $n \in \mathbb{N}^*$.

Exercise 7 (4 points)

Let $f: \left\{ \begin{array}{ccc} \mathbb{R}^4 & \longrightarrow & \mathbb{R}^3 \\ \\ (x,y,z,t) & \longmapsto & (x+y,2x+y+z,x+t) \end{array} \right.$

1. Prove that f is a linear map.

3. Deduce Im(f).