Algorithmics
Final Exam #2 (P2)

Undergraduate 1% year S2#
EriTA

January, 7Tth 2020 - 13h-15h

Instructions (read it) :
O You must answer on the answer sheets provided.

— No other sheet will be picked up. Keep your rough drafts.

— Answer within the provided space. Answers outside will not be marked: Use your drafts!

Do not separate the sheets unless they can be re-stapled before handing in.

— Penciled answers will not be marked.

O The presentation is negatively marked, which means that you are marked out of 20 points and the
presentation points (maximum of 2) are taken off this grade.

O Code:

All code must be written in the language Python (no C, CAaML, ALGO or anything else).

Any Python code not indented will not be marked.

— All that you need (types, routines) is indicated in the appendix (last page)!

Your functions must follow the given examples of application.

O Duration : 2h

MILLE MILLIONS DE
SOVHAITS
POUR
L’ANNEE.
NOUVELLE!




Algorithmics Undergraduate 1%¢ year S2#
FinaL ExaMm #2 (P2) — January, 7th 2020 - 13h-15h EpiTA

Exercise 1 (Leonardo Trees — 3 points)

In this exercise we will study some properties of a certain type of tree: the Fibonacci trees. These are
defined recursively as follows:

Ao = EmptyTree
Ay = < o, EmptyTree, EmptyTree >
An =< O,An_17An_2 > Zf n =2

1. Give a graphical representation of the Fibonacci tree As.

2. (a) Give, in terms of n > 2 the height h,, of the tree A,,.
(b) Prove that the tree A,, is height-balanced.

Exercise 2 (Leonardo Trees, again — 4 points)

We take the Fibonacci trees defined the exercise 1, adding labels to nodes:

Ao = EmptyTree
Ay = < 1, EmptyTree, EmptyTree >
Ap, =< fibo(n), Ap_1,An_2> if n 22

Write the function leonardo_tree(n) that builds the Fibonacci tree A,. As indicated above, the
nodes will be labeled with the values of fibo(n) according to the following definition:

n <1= fibo(n) = n
n > 1= fibo(n) = fibo(n — 1)+ fibo(n — 2)

Exercise 3 (Deletion — 7 points)

Reminder of the principle of deleting an element in a binary search tree (BST):
The structure is the same as the research.
Once the element found (it is in root), if the node that contains the element is:

e a leaf, we delete it directly: the result is the empty tree;
e a single node, we delete the node : it is replaced by its only child;

e a double node, we replace the key in root by the maximum of its left subtree, and we call again the
deletion of this value on the left.

1. Write the function maxBST(B) that returns the maximum values in the non-empty BST B.

2. Write the recursive function delBST(B, z) that deletes the value x (the first found) in the BST
B and returns the result tree.

Exercise 4 (Construction — 4 points)

Starting with an empty tree build the AVL corresponding to the successive insertions of values 25,
60, 35, 10, 20, 5, 70, 65.
You have to draw the tree at two steps:

e after insertion of 20 ;
e the final tree.

Give used rotations in order (for instance if a left rotation occurred on the tree the root of which is
42, write Ir(42).)



Algorithmics
FiNAL ExaM #2 (P2) — January, 7th 2020 - 13h-15h

Undergraduate 15 year S2#
EPITA

Exercise 5 (What is this? — & points)

Consider the following functions:

1 def __test(B):

2 if B == None:
return (-1, True)

4 else:
(hl, t1l) = __test(B.left)
(hr, tr) = __test(B.right)

s def test(B):
10 (x, res) = __test(B)
11 return res

return (1 + max(hl, hr), tl and tr and abs(hl-hr) < 2)

Figure 1: Tree B, Figure 2: Tree By

1. For each of the above tree, what is the result returned by test(B;) ?
2. What does the function test(B) do?

3. This function can be optimized. How?



Algorithmics Undergraduate 1%¢ year S2#
FinaL ExaMm #2 (P2) — January, 7th 2020 - 13h-15h EpiTA

Appendix

Binary Trees

1 class BinTree:

2 def __init__(self, key, left, right):
3 self .key = key

4 self.left = left

5 self.right = right

Your functions

You can write your own functions as long as they are documented (we have to known what they do).
In any case, the last written function should be the one which answers the question.



