Algorithmics
Correction Final Exam #2 (P2)

UNDERGRADUATE 1% YEAR S2# — EPITA

January, 7Tth 2020 - 13h-15h

Solution 1 (Leonardo trees — 3 points)

1. The Fibonacci tree As is the one in figure 1 with each node containing its balance factor value.

Figure 1: The Fibonacci tree As

2. (a) hp=n-1
(b) Ao is a leaf, A; has a single node at its left, nothing at its right : these trees are height-balanced.
With n > 2, A, height is n — 1. Its subtrees are A, _1 of height n — 2 and A,,_5 of height n — 3.
Thus, the balance factor of the root of 4,, is 1 (n —2 — (n — 3)).
All internal nodes of a Fibonacci tree have a balance factor of 1 : it is an height-balanced tree.



Algorithmics UNDERGRADUATE 1%t YEAR S2#
CORRECTION FINAL ExAM #2 (P2) - EpriTA

Solution 2 (Leonardo Trees, again — 4 points)

Specifications:
The function leonard_tree(n) builds the Fibonacci tree A,,.

1 def leonardo_tree(n):

2 if n == 0:
3 return None
4 elif n == 1:
return BinTree (1, None, None)
else:
G = leonardo_tree(n-1)
8 D = leonardo_tree (n-2)
) key = G.key
10 if D != None:

11 key += D.key

return BinTree (key, G, D)

Solution 3 (Deletion)

1. Specifications:
La fonction maxBST (B) retourne la valeur maximale de ’arbre binaire de recherche non vide B.

1 def maxBST(B):

2 while B.right != None:
B = B.right

4 return B.key

2. Specifications:
The function delBST(B, x) deletes the element = from the binary search tree B and returns the
tree.

1 def delBST (B, x):
2 if B == None:
return None

4 else:
5 if x == B.key:
if B.left == None
7 return B.right
8 elif B.right == None:
9 return B.left
10 else:
11 B.key = maxBST(B.left)
12 B.left = del_bst(B.left, B.key)
13 return B
14 else:
15 if x < B.key:
16 B.left = delBST(B.left, x)
17 else:
18 B.right = delBST(B.right, x)
19 return B




Algorithmics UNDERGRADUATE 1%t YEAR S2#
CORRECTION FINAL ExAM #2 (P2) - EpriTA

Solution 4 (AVL — 3 points)

Final AVL from the list [25,60, 35, 10, 20, 5, 70, 65].

/Tree built by insertions of 25, 60, 35, 10, 20: Rotations: \

rlr(25) rdg(25)
1rr(25) rgd(25)

Tree after insertions of 5, 70, 65: Rotations:

rr(35) rd(35)
rlr(60) rdg(60)

/

Solution 5 (What is this? — 3 points)

1. Results for (a) test(Bg): True
(b) test(Bs): False

2. test(B) checks if the binary tree B is height-balanced.

3. To optimize this function: if the boolean of the first call is false, it is possible to avoid the second by
directly returning (7,False).



