Algorithmics
 Correction Final Exam \#2 (P2)

Undergraduate $1^{\text {st }}$ year S2 - Epita

30 May 2018-14:00

Solution 1 (AVL - 3 points)

Final AVL from th list $[25,60,35,10,20,5,70,65,45]$.

Solution 2 (Leonardo trees - 3 points)

1. The Fibonacci tree A_{5} is the one in figure 1 with each node containing its balance factor value.

Figure 1: The Fibonacci tree A_{5}
2. (a) $h_{n}=n-1$
(b) A_{0} is a leaf, A_{1} has a single node at its left, nothing at its right : these trees are heightbalanced.
With $n \geq 2, A_{n}$ height is $n-1$. Its subtrees are A_{n-1} of height $n-2$ and A_{n-2} of height $n-3$. Thus, the balance factor of the root of A_{n} is $1(n-2-(n-3))$.
All internal nodes of a Fibonacci tree have a balance factor of 1 : it is an height-balanced tree.

Solution 3 (List \rightarrow AVL -5 points)

Specifications:

The function list2avl(L) returns an A.-V.L. (class AVL) built from the list L sorted in stricly increasing order.

First version :

- Works on [left, right] (as in lecture)
- Recursive function returns the height: to compute balance factors in each node

```
def ___sortedList2AVL(L, left, right):
    L[left, right] }->\mathrm{ AVL
    " ""
    if left > right:
        return (None, -1)
    else:
        mid = left + (right-left) // 2 # or (left + right) // 2
        B = avl.AVL(L[mid], None, None, 0)
        (B.left, hl) = __sortedList2AVL(L, left, mid - 1)
        (B.right, hr) = __sortedList2AVL(L, mid + 1, right)
        B.bal = hl - hr
        return (B, 1 + max (hl, hr))
def sortedList2AVL(L):
    (A, _) = __sortedList2AVL(L, 0, len(L) - 1)
    return A
```

Solution 4 (AVL - Minimum deletion -6 points)

1. Rotations and height changes after minimum deletion:

bal(root)	bal(right child)	rotation	$\Delta \mathrm{h}$
-2	-1	lr	1
	0		0
	1	rlr	1

2. Specifications: The function del_min_avl (A) deletes the node containing the minimum value of the non-empty AVL A. It returns a pair: the new tree and a boolean that indicates whether the tree height has changed.
```
def del_min_avl(A):
    if A.left == None:
            return (A.right, True)
    else:
        (A.left, dh) = del_min_avl(A.left)
        if dh:
            A.bal -= 1
            if A.bal == -2:
                if A.right.bal == +1:
                    A = rlr(A) # rdg(A)
                else:
                        A = lr(A) # rg(A)
            return (A, A.bal == 0)
        else:
            return (A, False)
# long version
def del_min_avl2(A):
    if A.left == None:
        return (A.right, True)
    else:
        (A.left, dh) = del_min_avl2(A.left)
        if not dh:
            return (A, False)
        else:
                A.bal -= 1
                if A.bal == 0:
                return (A, True)
            elif A.bal == -1:
                return (A, False)
            else: # A.bal == -2
                if A.right.bal == -1:
                    A = lr(A) # rg(A)
                    return (A, True)
                elif A.right.bal == 0:
                    A = lr(A) # rg(A)
                    return (A, False)
                else:
                    A = rlr(A) # rdg(A)
                    return (A, True)
```

Solution 5 (BST and mystery - 4 points)

1. Returned results?
(a) call $(25, B)$: None
(b) call $(21, B): 26$
(c) $\operatorname{call}(20, B): 21$
(d) call $(9, B): 15$
(e) call $(53, B):$ None
2. bst_mystery (x, B) (B any BST, with distinct elements).

At the end of part 1 :
(a) B is the tree that contains x in its root, None if x is not in the tree.
(b) On the search path, P is the tree which root is the last encounter node before descending on the left (it stays None if we never go to the left).
3. call (x, B): if x is found in B and is not the greatest value, the function returns the value just after x in B. Otherwise it returns None.

