
Algorithmics

Correction Final Exam #2 (P2)

Undergraduate 1
st

year S2 – Epita

30 May 2018 - 14 : 00

Solution 1 (AVL – 3 points)

Final AVL from th list [25, 60, 35, 10, 20, 5, 70, 65, 45].✬

✫

✩

✪

Final AVL: Rotations:

rlr(25) rdg(25)

lrr(25) rgd(25)

rr(35) rd(35)

rlr(60) rdg(60)

rlr(35) rdg(35)

Solution 2 (Leonardo trees – 3 points)

1. The Fibonacci tree A5 is the one in figure 1 with each node containing its balance factor value.

Figure 1: The Fibonacci tree A5

2. (a) hn = n− 1

(b) A0 is a leaf, A1 has a single node at its left, nothing at its right : these trees are height-
balanced.
With n ≥ 2, An height is n − 1. Its subtrees are An−1 of height n − 2 and An−2 of height
n− 3. Thus, the balance factor of the root of An is 1 (n− 2− (n− 3)).
All internal nodes of a Fibonacci tree have a balance factor of 1 : it is an height-balanced tree.

1

Algorithmics
Correction Final Exam #2 (P2) –

Undergraduate 1st year S2

Epita

Solution 3 (List → AVL – 5 points)

Specifications:
The function list2avl(L) returns an A.-V.L. (class AVL) built from the list L sorted in stricly
increasing order.

First version :

• Works on [left, right] (as in lecture)

• Recursive function returns the height: to compute balance factors in each node

1 def __sortedList2AVL(L, left , right):

2 """
3 L [l e f t , r i g h t] −> AVL
4 """
5 if left > right:

6 return (None , -1)

7 else:

8 mid = left + (right -left) // 2 # or (l e f t + r i g h t) // 2
9 B = avl.AVL(L[mid], None , None , 0)

10 (B.left , hl) = __sortedList2AVL(L, left , mid - 1)

11 (B.right , hr) = __sortedList2AVL(L, mid + 1, right)

12 B.bal = hl - hr

13 return (B, 1 + max(hl, hr))

14

15 def sortedList2AVL(L):

16 (A, _) = __sortedList2AVL(L, 0, len(L) -1)

17 return A

2

Algorithmics
Correction Final Exam #2 (P2) –

Undergraduate 1st year S2

Epita

Solution 4 (AVL - Minimum deletion – 6 points)

1. Rotations and height changes after minimum deletion:

bal(root) bal(right child) rotation ∆h
-1

lr
1

-2 0 0
1 rlr 1

2. Specifications: The function del_min_avl (A) deletes the node containing the minimum value
of the non-empty AVL A. It returns a pair: the new tree and a boolean that indicates whether the
tree height has changed.

1 def del_min_avl(A):

2 if A.left == None:

3 return (A.right , True)

4 else:

5 (A.left , dh) = del_min_avl(A.left)

6 if dh:

7 A.bal -= 1

8 if A.bal == -2:

9 if A.right.bal == +1:

10 A = rlr(A) # rdg (A)
11 else:

12 A = lr(A) # rg (A)
13 return (A, A.bal == 0)

14 else:

15 return (A, False)

16

17 # long v e r s i on
18 def del_min_avl2(A):

19 if A.left == None:

20 return (A.right , True)

21 else:

22 (A.left , dh) = del_min_avl2(A.left)

23 if not dh:

24 return (A, False)

25 else:

26 A.bal -= 1

27 if A.bal == 0:

28 return (A, True)

29 elif A.bal == -1:

30 return (A, False)

31 else: # A. b a l == −2
32 if A.right.bal == -1:

33 A = lr(A) # rg (A)
34 return (A, True)

35 elif A.right.bal == 0:

36 A = lr(A) # rg (A)
37 return (A, False)

38 else:

39 A = rlr(A) # rdg (A)
40 return (A, True)

3

Algorithmics
Correction Final Exam #2 (P2) –

Undergraduate 1st year S2

Epita

Solution 5 (BST and mystery – 4 points)

1. Returned results?

(a) call(25, B) : None

(b) call(21, B) : 26

(c) call(20, B) : 21

(d) call(9, B) : 15

(e) call(53, B) : None

2. bst_mystery(x, B) (B any BST, with distinct elements).

At the end of part 1:

(a) B is the tree that contains x in its root, None if x is not in the tree.

(b) On the search path, P is the tree which root is the last encounter node before descending on
the left (it stays None if we never go to the left).

3. call(x, B): if x is found in B and is not the greatest value, the function returns the value just
after x in B. Otherwise it returns None.

4

