CAML

MCQ #6

Friday, September the 15p2023

- 1. Among the following phrases, which are improper?
- X (a) 3 * 1.5;
 - (b) let a = 1. and b = 3. in (a + . 2.) <= (4. -. b);;
- (c) let a = 1. and b = 3 in (a + . 2.) <= (4 b);;
 - (d) (4 < 8) || ("a" = "b") ;;
 - (e) None of the above.
 - 2. Let f, g, x and y, all be defined in the current environment. Among the following expressions, which are equivalent to (f x) + g y?
- (a) f(x) + g(y)
- \times (b) fx + gy
 - (c) f(x+g)y
 - (d) ((f x + g) y)
- (e) (f x + (g y))
 - 3. What should be the types of functions f and g so that the following expression is correct? f((g(3*2) 4)+1)(5-f(2);
 - (a) f: int -> int and g: int -> int
 - (b) f: int -> int and g: int -> int -> int
 - (c) f: int -> int -> int and g: int -> int
 - (d) f: int -> int -> int and g: int -> int -> int
 - (e) None of the above.
 - 4. What is the evaluation result of the following definition?

```
let f x y =
let f2 x y z = z = (x + y)/2 in
let f3 = f2 x y 10 > f2 x y 8 in
f3 < true ;;</pre>
```

- (a) val f : int -> bool -> bool = <fun>
- (b) val f : int -> int -> bool = <fun>
- (c) val f : int -> int -> int -> bool = <fun>
- (d) val f : int -> int -> bool -> bool = <fun>
- (e) An error.

X

5. What does the evaluation result of the following phrase contain?

```
let square x = match x with
 x when x > 0 -> x * x
 | y -> invalid_arg "x has to be positive" ;;
```

- (a) val square : int -> string = <fun>
- (b) val square : int -> int = <fun>
 - (c) ... Warning ...: this pattern-matching is not exhaustive...
 - (d) ... Warning ...: this match case is unused.
 - (e) Another "Warning".

6. Let the function g, be defined as follows. Which statements are true?

- (a) The two parameters (x and y) have to be of the same type.
- (b) y can be of any type.
 - (c) x can be of any type.
- (d) The function never returns -1.
 - (e) If $x \neq 0$ and $x \neq y$, the function returns -1.

7. What will be the last result after successive evaluations of the following phrases?

- (a) val f : int -> int = <fun>
- (b) : int = 22
- \times (c) : int = 44
 - $(d) : int = \langle fun \rangle$
 - (e) An error.

8. What is the type of the function f defined below?

- (a) int -> int -> int
 - (b) int * int -> int
 - (c) 'a * 'b -> int

×

- (d) 'a -> 'a -> int
- (e) The function is incorrect.

9. What is the type of the function f defined below?

- (a) int -> int -> int
- (b) int * int -> int
- (c) 'a * int -> 'a
 - (d) The function is incorrect.

10. For which values of x the following function does not stop for sure in theory?

- 7
- (a) x < 0.
- (b) x > 0 and even.
- (c) z odd.
- (d) It stops for any value of z.
- (e) It never stops.

MCQ 6

Friday, 15 September

Question 11

Let x be a real number. Select the correct answer(s)

 $x \qquad a. \ x > 1 \implies x \ge 1$

b. $x \ge 1 \implies x > 1$

x = c. $e^x = 2 \implies x = \ln(2)$

 $\mathbf{d}. \ \mathbf{x} = \ln(2) \implies e^{\mathbf{x}} = 2$

e. None of the others

Question 12

X

×

The negation of "All the tulips are red" is:

a. "No tulip is red"

b. "Some tulips are not red"

c. "There exist blue tulips"

d. None of the others

Question 13

Let f be a function defined on R. The negation of: " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x = f(y)$ " is:

a. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x \neq f(y)$

b. $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x = f(y)$

c. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x \neq f(y)$

d. $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \neq f(y)$

e. None of the others

Question 14

Let $x \in \mathbb{R}$ and consider the property $P: \|x>0 \implies x \ge 0$.

- a. The negation of P is: " $x < 0 \implies x \le 0$ "
- \times b. The negation of P is: " $x > 0 \land x < 0$ "
- \times c. The contrapositive of P is: " $x < 0 \implies x \le 0$ "
 - d. The contrapositive of P is: " $x > 0 \land x < 0$ "
 - e. None of the others

Question 15

Consider the set $E = \{0, 1, 2, 3\}$. Select the correct answer(s):

- a. $1 \subset E$
- \times b. $3 \in E$
 - c. $\{0\} \in E$
- $\not\subset$ d. $\{0,2\}\subset E$
 - e. None of the others

Question 16

Let $E = \{(0,1), (0,2), (0,3), (1,1), (1,2), (1,3)\}$. Then $E = A \times B$ with

a.
$$A = B = \{0, 1, 2, 3\}$$

b.
$$A = \{1, 2, 3\}$$
 and $B = \{0, 1\}$

c. $A = \{0, 1\}$ and $B = \{1, 2, 3\}$

d. We cannot know what A and B are.

Question 17

×

×

Let E be F two sets and $f: E \longrightarrow F$. The function f is injective if and only if:

a.
$$\forall (x,x') \in E^2$$
, $x=x' \implies f(x)=f(x')$

b.
$$\forall (x, x') \in E^2, x \neq x' \implies f(x) \neq f(x')$$

c.
$$\forall (x, x') \in E^2$$
, $x = x'$ and $f(x) \neq f(x')$

d.
$$\forall (x, x') \in E^2$$
, $x \neq x'$ and $f(x) = f(x')$

e. None of the others

Question 18

Let I and J be two intervals of R and $f: \begin{cases} I & \longrightarrow & J \\ x & \longmapsto & |x| \end{cases}$

- a. If $I = J = \mathbb{R}$, then f is bijective.
- b. If $I = [0, +\infty]$ and $J = \mathbb{R}$, then f is bliective.
- c. If $I = \mathbb{R}$ and $J = [0, +\infty]$ then f is bljective.
- d. If J = J = [0, 5] then f is bijective.
- e. None of the others

Question 19

×

Which of these figures represent(s) a function $f:\{0,1,2,3\}\longrightarrow\{0,1,2,3\}$ such that $f^{-1}(\{0,2\})=\{1,2\}$?

d. None of these figures

Question 20

In $E = \mathbb{N}$, consider the relation \mathscr{R} defined by: $\forall (a,b) \in E^2, a \mathscr{R}b \iff \exists n \in \mathbb{N}$ such that $b = a^n$. Then:

- x a. 298
 - b. 8 \mathcal{R} 2
- \sim c. \mathcal{R} is reflexive.
 - d. R is symmetric.
 - e. None of the others