K

K

×

X

CAML

MCQ #5

Thursday, September the 14th 2023

1. What is the type of the function g defined below?

- (a) (int * bool) * (int * bool) * (int * bool)
- (b) int * int -> int * bool
- (c) (int * bool) -> (int * bool) -> int * bool
- (d) (int * bool) * (int * bool) -> int * bool
- (e) The function is incorrect.
- 2. What will be the last result after successive evaluations of the following phrases?

```
let a = let b = (1,true) in (b,"one") ;;
let (x,y) = \a in y ;;
```

- (a) : int * bool = (1, true)
- (b) : int * string = (1, "one")
- (c) : string = "one"
- (d) -: bool * string = (true, "one")
- (e) An error.
- 3. Let f: int -> float -> bool defined in the current environment and print_me the function defined below:

```
let print_me x y =
   if f x y then
      ( print_int x;
        print_float y;; f)
```

Which statements are true?

- ★ (a) If f x y is true the function print_me prints the value of x.
 - (b) If f x y is true the function print_me prints the value of y.
 - (c) If f x y is false the function print_me prints the value of x.
 - (d) If f x y is false the function print_me prints the value of y.
 - (e) This function is incorrect.
 - 4. What does the following function calculate when called with f x $(x \ge 0)$?

- (a) x
- (b) x+1
- (c) $\sum_{i=0}^{x} i$
- (d) Nothing, it does not terminate!

5. What does the following function calculate when called with $f \times (x > 0)$?

```
let rec f = function
    0 -> 0
| x when x mod 3 = 0 -> f (x+1) + x
| x -> f (x+1) + x ii
```

- (a) The sum of the x first integers.
- (b) The sum of the x first integers divisible by 3.
- (c) The sum of the integers divisibles by $3 \le to x$.
- (d) x^3
- (e) Nothing, it does not terminate!
- 6. For which values of x the following function does not stop for sure in theory?

- $(\hat{\mathbf{a}}) \ x < 0.$
 - (b) x > 0 and even.
 - (c) x odd.

•

K

X

×

- (d) It stops for any value of x.
- (e) It never stops.
- 7. What is the type of the function f defined below

- (a) int -> int -> int
- (b) int * int -> int
- (c) 'a * int -> 'a
- (d) The function is incorrect.
- 8. What does the following function calculate when called with f (a,b) $(b \ge 0)$?

let rec f = function

$$(a,0) \sim 1^{\Lambda}$$

 $| (a,b) \rightarrow f (a,b-1) * a ;;$

- (a) a+b
- (b) a * b
- (c) ab
- (d) Nothing, it does not terminatel
- 9. What does the following function calculate when called with f n $(n \ge 0)$?

- (a) The number of digits of n.
- (b) The number of even digits of n.
- (c) The number of odd digits of n.
- (d) Nothing, it does not terminate!
- (e) Nothing, it is incorrect.

10. What does the following function calculate when called with f (a,b) $(b \ge 0)$?

- K (a) a+b
 - (b) a * b
 - (c) 2a+b
 - (d) Nothing, it does not terminatel

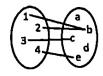
Ž

MCQ 5

Thursday, 14 September

Question 11

Consider the function $f: \{1, 2, 3, 4\} \longrightarrow \{a, b, c, d, e\}$ defined by the following figure:



Then:

$$\text{a. } f(\{1,2,3\}) = \{b,c\}$$

b.
$$f(\{1,2,3,4\}) = \{a,c,e\}$$

c.
$$f^{-1}(\{b,c\}) = \{2,3\}$$

K d.
$$f^{-1}(\{a,d\}) = \emptyset$$

Question 12

Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined for all $x \in \mathbb{R}$ by $f(x) = x^2$.

a.
$$f([0,1]) = [-1,1]$$

$$b. \ f([-1,1]) = [0,1]$$

c.
$$f^{-1}([0,4]) = [-16,16]$$

d.
$$f^{-1}([-1,0]) = \emptyset$$

e. None of the others

Question 13

X

Let I and J be two subsets of $\mathbb R$ and $f: \left\{ \begin{array}{ccc} I & \longrightarrow & J \\ x & \longmapsto & x^2 \end{array} \right.$

a. If
$$I = J = \mathbb{R}$$
, then f is surjective.

b. If
$$I = \mathbb{R}$$
 and $J = \mathbb{R}^+$, then f is surjective.

c. If
$$I = N$$
 and $J = N$, then f is surjective.

d. If
$$I = \{-2, -1, 0, 2\}$$
 and $J = \{0, 1, 4, 8\}$, then f is surjective.

e. None of the others

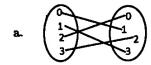
Question 14

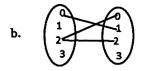
Let E and F be two sets and $f: E \longrightarrow F$. The function f is surjective if and only if:

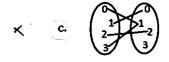
- a. $\forall y \in F, \exists x \in E, x = f(y)$
- b. $\forall x \in F, \exists y \in F, y = f(x)$
- c. $\forall y \in F, \forall x \in E, y = f(x)$
- $\forall x \in E, \exists x \in E, y = f(x)$
 - e. None of the others

Question 15

Which of these figures represent(s) a function $f:\{0,1,2,3\}\longrightarrow\{0,1,2,3\}$ such that $f^{-1}(\{0,2\})=\{1,2\}$?







d. None of these figures

Question 16

Consider a set E and a relation $\mathcal R$ defined over E. Select the correct definitions(s):

- \times a. \mathscr{R} is reflexive if: $\forall x \in E, x \mathscr{R} x$
 - b. \mathscr{R} is symmetric if: $\forall (x,y) \in E^2$, $x \mathscr{R} y$ and $y \mathscr{R} x$
 - c. $\mathscr R$ is antisymmetric if: $\forall (x,y) \in E^2, \, x \, \mathscr R \, y, \, y \, \mathscr R \, x$ and x=y
- A d. \mathscr{R} is transitive if: $\forall (x,y,z) \in E^3$, $x \mathscr{R} y$ and $y \mathscr{R} z \Longrightarrow x \mathscr{R} z$
 - e. None of the others

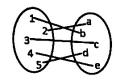
Question 17

In $E = \mathbb{N}$, consider the relation \mathscr{R} defined by: $\forall (a, b) \in E^2$, $a \mathscr{R} b \iff \exists n \in \mathbb{N}$ such that $b = a^n$. Then:

- K a. 2928
 - b. 8\$2
- X c. \mathscr{R} is reflexive.
 - d. $\mathcal R$ is symmetric.
 - e. None of the others

Question 18

Consider the function $f:\{1,2,3,4,5\} \longrightarrow \{a,b,c,d,e\}$ defined by the following figure:



- a. f is injective, not surjective.
- b. f is surjective, not injective.
- c. f is neither injective nor surjective.
- d. f is injective and surjective.

Question 19

Let E and F be two sets and $f: E \longrightarrow F$. The function f is injective if and only if:

- $(x, x') \in E^2, f(x) = f(x') \implies x = x'$
- \forall b. $\forall (x, x') \in E^2, x \neq x' \implies f(x) \neq f(x')$
 - c. $\forall (x, x') \in E^2$, x = x' and $f(x) \neq f(x')$
 - d. $\forall (x, x') \in E^2$, $x \neq x'$ and f(x) = f(x')
 - e. None of the others

Question 20

Let $E = \{0, 1, 2\}$ and $\mathscr{P}(E)$ the set of all the subsets of E. Then:

- x a. $\{0,1\} \in \mathscr{P}(E)$
 - b. $(0,1) \in \mathscr{P}(E)$
 - c. $\operatorname{Card}(\mathscr{P}(E)) = 9$
 - d. $\operatorname{Card}(\mathscr{P}(E)) = 8$
 - e. None of the others