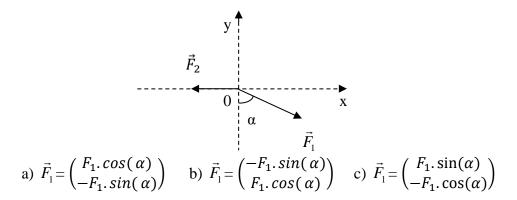
NOM :GROUPE :.......

Année: 2018/2019


Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM (Sans points négatifs) 4 points

Entourer la bonne réponse

1- Les composantes du vecteur force \vec{F}_1 sur le schéma ci-dessous sont :

2- Les composantes du vecteur force \vec{F}_2 sur le schéma ci-dessus sont :

a)
$$\vec{F}_2 = \begin{pmatrix} -F_2 \\ 0 \end{pmatrix}$$
 b) $\vec{F}_2 = \begin{pmatrix} F_2 \\ 0 \end{pmatrix}$ c) $\vec{F}_2 = \begin{pmatrix} 0 \\ -F_2 \end{pmatrix}$

3- Le produit vectoriel des deux vecteurs $\vec{V}_1 \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ et $\vec{V}_2 \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix}$ est

a)
$$\vec{W} = \begin{pmatrix} 1 \\ 9 \\ 13 \end{pmatrix}$$
 b) $\vec{W} = \begin{pmatrix} 1 \\ -9 \\ 13 \end{pmatrix}$ c) $\vec{W} = \begin{pmatrix} 1 \\ -11 \\ 12 \end{pmatrix}$

4- Le vecteur vitesse en coordonnées polaires s'écrit :

a)
$$\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 b) $\vec{V} = \stackrel{\bullet}{\rho} \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\rho} \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ c) $\vec{V} = \rho \cdot \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

6- Le vecteur accélération en coordonnées polaires est donné par

$$\vec{a} = (\rho - \rho(\theta)^2) \cdot \vec{u}_{\rho} + (2\rho\theta + \rho\theta) \cdot \vec{u}_{\theta}$$

Dans le cas d'un mouvement circulaire accéléré et de rayon R, le vecteur accélération s'écrit

a)
$$\vec{a} = \begin{pmatrix} 0 \\ \cdot \cdot \\ R.\theta \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} -R(\dot{\theta})^2 \\ \cdot \cdot \\ R.\theta \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} -R(\dot{\theta})^2 \\ 0 \end{pmatrix}$ d) $\vec{a} = \begin{pmatrix} R(\dot{\theta})^2 \\ 0 \end{pmatrix}$

7- Dans la base de Frenet le vecteur vitesse s'écrit :

a)
$$\vec{V} = R(t) \stackrel{\bullet}{\theta}(t) \vec{u}_N$$
 b) $\vec{V} = R(t) \stackrel{\bullet}{\theta} \vec{u}_T$ c) $\vec{V} = R(t) \stackrel{\bullet}{\theta}(t) \vec{u}_T$

b)
$$\vec{V} = R(t) \stackrel{\bullet}{\theta} \vec{u}_{1}$$

c)
$$\vec{V} = R(t) \dot{\theta}(t) \vec{u}_1$$

8- Le vecteur accélération en base de Frenet \vec{a} s'écrit

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R^2} \end{pmatrix}$$
 b) \vec{a}

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R^2} \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$

c)
$$\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$$

Exercice 1 (4 points)

Les équations horaires dans le plan (xOy) d'un point matériel sont données par :

 $(x(t) = 2a\cos(\omega.t))$ (a et ω sont des constantes positives). $\begin{cases} y(t) = a \sin(\omega . t) \end{cases}$

1- Retrouver l'équation de la trajectoire de ce mouvement, préciser sa nature.

2-Exprimer le vecteur vitesse, en déduire la norme de ce vecteur.	

	accélération, en déduire la norme de ce vecteur. ion entre les vecteurs \vec{a} et \overrightarrow{OM} .
noraires du mouvement	nent d'un point matériel sur une spirale tracée sur un cône. Les équations en coordonnées cylindriques sont données par :
$(Z(v) ap_0v$	$ \rho_0 $, a et ω sont des constantes positives) sition \overrightarrow{OM} en coordonnées cylindriques. En déduire le vecteur vitesse.

b) Montrer que la norme du vecteur vitesse est d'expression : $V(t) = \rho_0 \cdot \omega e^{\omega t} \sqrt{2 + a^2}$	
2- a) Exprimer le vecteur accélération.	
b) Montrer que la norme du vecteur accélération est d'expression : $a(t) = \rho_0 \cdot \omega^2 e^{\omega t} \sqrt{\frac{1}{2}}$	$\sqrt{4+a^2}$

3- Utiliser les équations de passage pour exprimer équations horaires: $x(t)$, $y(t)$ et $z(t)$ de ce mouvement en coordonnées cartésiennes.				
a) Exprimer le	vecteur vitesse en c	coordonnées cart	tésiennes.	

b- Retrouver la norme du vecteur vitesse calculée dans la question (1b).
5- a) Exprimer le vecteur accélération en coordonnées cartésiennes.
b) Retrouver la norme du vecteur accélération calculée dans la question (2b).

Exercice 3 (4 points)

Les coordonnées cartésiennes d'un point M mobile dans le plan (xOy) sont données par :

 $x(t) = 2\cos(0.5t)$ et $y(t) = 2\sin(0.5t)$

- 1- Déterminer l'équation et la nature de la trajectoire.
- 2- Déterminer les composantes des vecteurs vitesse et accélération ainsi que leurs normes
- 3- Déterminer les composantes normale et tangentielle de l'accélération dans un repère de Frenet.

<u>4-</u>	En déduire le rayon de courbure de la trajectoire.