Physics Midterm 1

Calculators and extra-documents are not allowed. Please answer only on exam sheets

MCQ (4 points)

Circle the correct answer

1- The norm of the net force \vec{R} of two non-vanishing forces \vec{F}_1 and \vec{F}_2 , which are collinear and of opposite orientation, is

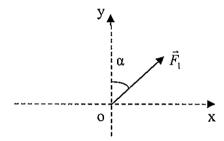
a)
$$R = 0$$

b)
$$R = \sqrt{F_1^2 + F_2^2}$$
 c) $R = F_1 + F_2$ d) $R = |F_1 - F_2|$

c)
$$R = F_1 + F_2$$

d)
$$R = |F_1 - F_2|$$

2- The components of the vector force \vec{F}_1 sketched below are:



a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$

b)
$$\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$$

a)
$$\vec{F}_1 = \begin{pmatrix} F_1 \\ 0 \end{pmatrix}$$
 b) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \sin(\alpha) \\ F_1 \cdot \cos(\alpha) \end{pmatrix}$ c) $\vec{F}_1 = \begin{pmatrix} F_1 \cdot \cos(\alpha) \\ F_1 \cdot \sin(\alpha) \end{pmatrix}$

3- The scalar product between two collinear vectors which have opposite orientation is

- a) strictly positive
- b) vanishing
- c) strictly negative

4- The norm of the vector $\vec{V}_3=\vec{V}_1\wedge\vec{V}_2$, defined such that $(\vec{V}_1,\vec{V}_2)=\alpha$, is

a)
$$V_3 = V_1 V_2 | \sin(\alpha) |$$

b)
$$V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$$

a)
$$V_3 = V_1 \cdot V_2 \cdot |\sin(\alpha)|$$
 b) $V_3 = V_1 \cdot V_2 \cdot \cos(\alpha)$ c) $V_3 = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos(\alpha)}$

5- The velocity vector reads in polar coordinates:

a)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$

a)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$$
 b) $\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta}$ c) $\vec{V} = \rho . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

c)
$$\vec{V} = \rho \cdot \vec{u}_o + \dot{\theta} \vec{u}_e$$

6- In Frenet's basis the elementary curvy coordinate ds reads:

a)
$$ds = R.\dot{\theta}$$

b)
$$ds = dV.dt$$
 c) $ds = R.d\theta$

c)
$$ds = R.d\theta$$

7- The expression of the curvy coordinate s(t) is given by

a)
$$s(t) = \int_0^t a_T . dt$$
 b) $s(t) = \int_0^t v . dt$ c) $s(t) = \int_0^t a_N . dt$

8- The trajectory equation of the motion whose time-dependent equations are $\begin{cases} x(t) = A\sin(\omega t) \\ v(t) = B\cos(\omega t) \end{cases}$

(where A, B and ω are positive constants $(A \neq B)$) is:

a)
$$x^2 + y^2 = 1$$

a)
$$x^2 + y^2 = 1$$
 b) $x^2 + y^2 = A^2 + B^2$ c) $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$

c)
$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$

A. Zellagui

Exercise	1	(4	points)	١

The time-dependent equations of a motion are given in Cartesian coordinates:

$$\begin{cases} x(t) = 1 + R\sin(\omega t) \\ y(t) = 2 + R\cos(\omega t) \end{cases}$$
 where ω and R are constants.

1-Express the components of the velocity vector \vec{V} as a function of time. Write its norm.

	-		
 ,			

2- Express the components of the acceleration vector \vec{a} as a function of time. Write its norm.

- Empress the con	ration voctor a as t	a runotion of thise. W	THE RS HOIM.

3- Find the trajectory equation y = f(x). Describe its shape and its features.

			∹
		-	_
o i ma mo dagocoty oquation y	(A). Describe its shape and its features.		
o i ma me dajectory equation y	I(X). Describe its shape and its teatures.		

	Exer	cise	2
--	------	------	---

(6 points)

The components of the vector position $O\vec{M}$ are written in Cartesian coordinates as:

$$\begin{cases} x(t) = ae^{\omega .t} \cos(\omega .t) \\ y(t) = ae^{\omega .t} \sin(\omega .t) \end{cases}$$

where a and ω are positive constants.

1- Write the position vector \vec{OM} in polar coordinates in the basis $(\vec{u}_{\rho}, \vec{u}_{\theta})$.

2-	Express	in polar	coordinates	the v	velocity	vector	$ec{V}$,	Write its	norm.	Assume	that $\dot{\theta}$	=	ω

3- Express in polar coordinates the acceleration vector \vec{a} . Write its norm.

A. Zellagui

4- Express the acceleration components a_T and a_N in Frenet's basis. Deduce the curvature radius Ro
Exercise 3 Parts I and II are independent (6 points)
I-1) Prove that in Frenet's basis the velocity reads $\vec{V} = R(t) \stackrel{\bullet}{\theta} . \vec{u}_T$.

I-2) Deduce the expression of the acceleration vector \vec{a} in Frenet's basis.
II- Let us consider a pointlike mass M which is moving in a plan, with an acceleration given as a function
of time in Frenet's basis by the following expression:
$\vec{a} = \alpha . \vec{u}_T + \beta t^2 . \vec{u}_N$ (\alpha and \beta are positive constants)
1) Find the units of the constants α and β . Detail your answer.
2) Write the curvy coordinate $s(t)$ between the moments $t_0 = 0$ and t . Given data: $v(t_0) = 0$ and $s(t_0) = 0$

3) Prove that the curvature rad	lius is given by: $R_c = \frac{\alpha^2}{\beta}$	

A. Zellagui