Exercise 1: equation of degree two

1. Solve in \mathbb{C} the following equation: $2z^2 + 2\sqrt{3}z + 2 = 0$. Let z_1 and z_2 denote the two solutions.

The discriminant is $\Delta = -4$. Thus, $z_1 = \frac{-2\sqrt{3}+2i}{4} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ and $z_2 = \overline{z_1} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$

2. Find the exponential forms of z_1 and z_2 .

 $|z_1| = |z_2| = 1$. $z_1 = e^{\frac{5\pi}{6}i}$ and $z_1 = e^{\frac{7\pi}{6}i}$.

Exercise 2: logic

Consider a function $f : \mathbb{R} \longrightarrow \mathbb{R}$.

- 1. Translate in mathematical language the following sentences (using quantifiers)
 - (a) "The equation f(x) = 0 admits at least one solution"

 $\exists x \in \mathbb{R}, \ f(x) = 0$

(b) "The function f is a constant function"

$$\exists a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = a$$

(c) "The function f is upper bounded"

 $\exists M \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) \le M$

- 2. Consider the following properties: $P: "\forall x \in \mathbb{R}, \ f(x) = 0", \ Q: "\exists x \in \mathbb{R}, \ f(x) = 0" \ and \ R: "(\forall x \in \mathbb{R}, \ f(x) > 0) \lor (\forall x \in \mathbb{R}, \ f(x) < 0)"$
 - (a) Write the negation of P, of Q and of R.

$$\neg(P) = "\exists x \in \mathbb{R}, f(x) \neq 0"$$
$$\neg(Q) = "\forall x \in \mathbb{R}, f(x) \neq 0"$$

 $\neg(R) = "(\exists x \in \mathbb{R}, f(x) \le 0) \land (\exists x \in \mathbb{R}, f(x) \ge 0)"$

(b) Select in this table the implications which are true:

$P \Longrightarrow Q$	$Q \Longrightarrow P$	$Q \Longrightarrow R$	$\neg(Q) \Longrightarrow \neg(P)$	$\neg(P) \Longrightarrow \neg(R)$
Х			Х	

Exercise 3: sets and functions

1. Consider two sets E and F, a function $f: E \longrightarrow F$, $A \subset E$ and $B \subset F$. Write the mathematical definition of the sets f(A) and $f^{-1}(B)$.

$$f(A) = \{f(x); x \in A\}$$
 and $f^{-1}(B) = \{x \in E; f(x) \in B\}$

2. Using a figure, define a function $f : \{a, b, c, d\} \longrightarrow [\![1, 5]\!]$ which satisfies the three properties $f(\{a, b\}) = \{1, 2\}$, $f^{-1}(\{5\}) = \emptyset$ and $f^{-1}(\{2\}) = \{b, c\}$.

A possible answer, for example, is: f(a) = 1, f(b) = 2, f(c) = 2 and f(d) = 4

- 3. Let $g: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x-1| \end{cases}$
 - (a) Draw the graph of g.

We let you do it :)

(b) Find $g(\{-1,2\}), g([-1,3]), g^{-1}(\{1\}) and g^{-1}([0,1]).$

 $g(\{-1,2\}) = \{2,1\}, g([-1,3]) = [0,2], g^{-1}(\{1\}) = \{0,2\} \text{ and } g^{-1}([0,1]) = [0,2].$

(c) Is g injective? Justify. If not, find two intervals I_1 and J_1 such that $g: I_1 \longrightarrow J_1$ is injective.

g(0) = g(2) = 1 and $1 \neq 2$. The function g is hence not injective. To make it injective, we can choose for example $I_1 = [1, +\infty)$ and $J_1 = \mathbb{R}$.

(d) Is g surjective? Justify. If not, find two intervals I_2 and J_2 such that $g: I_2 \longrightarrow J_2$ is surjective.

-2 has no pre-image, the function g is hence not surjective. To make it surjective, we can choose for example $I_2 = \mathbb{R}$ and $J_2 = \mathbb{R}^+$.

Exercise 4: relations

In $E = \mathbb{N}^*$, consider the relation \mathcal{R} defined by: $\forall (a, b) \in E^2, a \mathcal{R} b \iff \exists n \in \mathbb{N}$ such that $b = a^n$.

1. Is \mathcal{R} reflexive? Justify.

Let $a \in E$. Then $a = a^1$ which implies that $a\mathcal{R}a$. \mathcal{R} is hence reflexive.

2. Is \mathcal{R} symmetric? Justify.

 $8 = 2^3$ which implies that $2\mathcal{R}8$. However, there is no $n \in \mathbb{N}$ such that $2 = 8^n$. Relation \mathcal{R} is hence not symmetric.

3. Is \mathcal{R} transitive? Justify.

Let $(a, b, c) \in E^3$ such that $a\mathcal{R}b$ and $b\mathcal{R}c$. Then there exists $(n, p) \in \mathbb{N}^2$ such that $b = a^n$ and $c = b^p$.

Thus, $c = a^{np}$ which leads to $a\mathcal{R}c$. The relation is transitive.

- 4. Let $(a,b) \in E^2$ such that $a\mathcal{R}b$ and $b\mathcal{R}a$.
 - (a) Show that there exists $(n,p) \in \mathbb{N}^2$ such that $b = b^{np}$.

Since $a\mathcal{R}b$ and $b\mathcal{R}a$, there exists $(n,p) \in \mathbb{N}^2$ such that $b = a^n$ and $a = b^p$. Thus, $b = (b^p)^n = b^{np}$.

(b) Deduce that b = 1 or n = p = 1. Finally, what have you proven in this question 4?

 $b = b^{np} \implies b = 1$ or np = 1. In the case np = 1, since n and p are natural numbers, n = p = 1.

If b = 1 then $a = b^p = 1$. If $b \neq 1$, then $b = a^n = a^1 = a$. In all cases, we get a = b. Relation \mathcal{R} is hence antisymmetric.