Midterm Exam S1 Computer Architecture

	1		
Answer on the v	worksheet	Dur	ation: 1 hr 30 min.
Last name:	First name:	Group	:
Exercise 1	(2 points)		
	owing expressions. Give each result in	n a power-of-two form. Write d	lown the result only
(do not show any	calculation).		
	Expression	Result	
	$\frac{64^4 \cdot 16^5 \cdot 8^{-8}}{(256^{-3} \cdot 32^{16})^4}$		
	$\frac{((65536 \cdot 32^{-3})^3 \cdot 2048^{10})^5}{(64^{-7} \cdot 1024)^{-7} \cdot 256}$		
-	(3 points) oytes do the following values contain? not show any calculation).	Use a power-of-two notation.	Write down the re-
• 256 GiB =			
• 128 Kib =	=		
• 32 Mib =			
-	bits do the following values contain? priate prefix so that the integer num	5 2	•
	ult only (do not show any calculation)		
• 2^{15} bits =			
• 4 MiB =			
• 2 ³⁵ bytes =	=		

Midterm Exam S1 1/4

Exercise 3 (5 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}). Write down the result only (do not show any calculation).

Number to Convert	Source Form	Result	
10111001.01101	Binary	Decimal	
CE.68	Hexadecimal	Decimal	
88.88	Decimal	Hexadecimal (2 digits after the point)	
105.40625	Decimal	Binary	
151.32	Base 8	Binary	
151.32	Base 8	Hexadecimal	
151.32	Hexadecimal	Base 8	
59.27	Decimal	Base 7 (3 digits after the point)	
32	Base 4	Base 5	
101110101.01011	Binary	Hexadecimal	

Exercise 4 (2 points)

Part 1: Encoding <u>unsigned</u> integers

sult are 8 bits wide. Write down the base-10 representation of the 8-bit
O his subsuperiors 4 10
8-bit subtraction: 4 – 10
sult are 8 bits wide. Write down the base-10 representation of the 8-bit

Midterm Exam S1 2/4

Part 2: Encoding <u>signed</u> integers

3.	Let us consider the following 8-bit addition: 120 + 10 The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.
4.	Let us consider the following 8-bit subtraction: $-126 - 10$ The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.

Exercise 5 (4 points)
Perform the operations below. Show all calculations.

Base 2								Base 16													
			1	1	0	0		0	1	1	1	L	0				9	С	A	8	
	_			1	1	1		0	0	1	1	L	1		+		В	F	С	E	
Base 2 Base									Base	8											
	1	0	1	0	1	0	0	0	1	1	0	0					7	2	4	6	
															+		2	6	5	3	

Midterm Exam S1 3/4

			mpater riremite etare		<u> </u>						
E) 1.		se 6 (4 points) mory has 4000 ₁₆ addr	resses.								
	How	many address lines d	loes this memory hav	/e?							
	Assur	ming that the lowest	address is 0_{16} , what is	s the highest a	ddress (in hexadecim	nal)?					
2.	A me	mory has 10 address	lines.								
_,		How many addresses are available (in hexadecimal)?									
	пом	many addresses are a	ivaliable (III llexadec								
	Assur	ning that the lowest	address is 0_{16} , what is	s the highest a	ddress (in hexadecim	nal)?					
3.	The n	nemory space of a m	icroprocessor is mad	le up of 4 mem	nory devices (M1 , M	(2, M3 and M4). M1					
					10 address lines. M1						
		west part of the ment bace is 0.	nory space, followed	l by M2 , M3 a	and M4 . The lowest	address of the mem-					
	ory sp	face is 0.									
	Comp	olete the table below	(in hexadecimal):								
	M1	Lowest Address		M3	Lowest Address						
	1411	Highest Address		1413	Highest Address						
	M 2	Lowest Address		M4	Lowest Address						
	1412	Highest Address			Highest Address						
					_						
	What	is the minimum num	nber of address lines	required by th	e microprocessor?						
Fe	el free i	to use the blank spac	e below if you need	to:	L						
		to use the blank space	e below if you need								
l											

Midterm Exam S1 4/4