Midterm Exam S1 Computer Architecture

Answer on the worksheet Duration:

Last name: Group: Group:

Exercise 1 (3 points)

Simplify the following expressions. Give each result in a power-of-two form. Write down the result only (do not show any calculation).

Expression	Result
$\frac{64^5 \cdot 8^6 \cdot 16^3}{\left(256^{-5} \cdot 128^2\right)^{-4}}$	
$\frac{(8^8 \cdot 512^{-7}) \cdot (11000 + 5384)^{-9}}{(16^{-5} \cdot (2^{20} - 2^{19}))^6 \cdot 256^{-7}}$	
$\frac{((8192 \cdot 32^{7})^{4} \cdot 32768^{-4})^{6}}{(8^{-9} \cdot 1024)^{-9} \cdot 4096}$	

Exercise 2 (3 points)

1. How many bits do the following values contain? <u>Use a power-of-two notation</u>. Write down the result only (do not show any calculation).

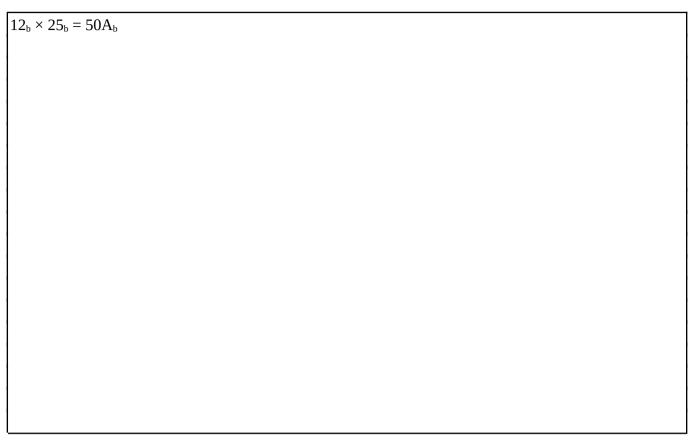
2. How many bytes do the following values contain? Use binary prefixes (Ki, Mi or Gi). **Choose the most appropriate prefix so that the integer numerical value will be as small as possible**. Write down the result only (do not show any calculation).

Exercise 3 (5 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}). Write down the result only (do not show any calculation).

Number to Convert	Source Form	Destination Form	Result
10111001.0101	Binary	Decimal	
E8.5	Hexadecimal	Decimal	
167.7	Decimal	Hexadecimal (2 digits after the point)	
92.3125	Decimal	Binary	
13.25	Base 8	Binary	
2705.14	Base 8	Hexadecimal	
4BC.23	Hexadecimal	Base 8	
80.25	Decimal	Base 5 (2 digits after the point)	
40	Base 9	Base 3	
100110011.10011	Binary	Hexadecimal	

Exercise 4 (5 points)


1. Work out the value of the base *b* so that the identity below is true. **Show all calculations.**

$22_{\rm b} \times 25_{\rm b} = 50 A_{\rm b}$		

Midterm Exam S1 2/4

$Computer\ Architecture-EPITA-S1-2020/2021$

1. Work out the value of the base <i>b</i> so that the identity below is true. Show all calcul	ations.
---	---------

2. According to the identity below, determine the relation between the *a* and *b* bases and work out their smallest values. Justify your answer. **Show all calculations.**

Midterm Exam S1 3/4

Exercise 5 (4 points)		
1.	In terms of <i>n</i> , how many <i>n</i> -bit unsigned integers can be encoded?	
2.	In terms of n , how many n -bit signed integers can be encoded?	
_	in terms of n, now many n-bit signed integers can be encoded:	
3.	In terms of <i>n</i> , what is the largest <i>n</i> -bit unsigned integer that can be encoded?	
4.	In terms of <i>n</i> , what is the largest <i>n</i> -bit signed integer that can be encoded?	
5.	In terms of <i>n</i> , what is the smallest <i>n</i> -bit signed integer that can be encoded?	
6.	The one's complement inverts each bit of a word. Answer true or false.	
L Eo	al free to use the blank space below if you need to:	
	el free to use the blank space below if you need to:	

Midterm Exam S1 4/4