Midterm Exam S1 Computer Architecture

Answer on the worksheet	Duration: 1 hr 30 min

Last name:	First name:	Group:
------------	-------------	--------

Exercise 1 (3 points)

Simplify the following expressions. Give each result in a power-of-two form. Write down the result only (do not show any calculation).

Expression	Result
$\frac{64^5 \cdot 4^7 \cdot 4^6}{\left(512^{-4} \cdot 128^8\right)^{-3}}$	
$\frac{(32^5 \cdot 1024^{-4}) \cdot (180 + 76)^{-7}}{(2^{-10} \cdot (2^{10} - 2^9))^3 \cdot 1024^{-4}}$	
$\frac{((2048 \cdot 8^{13})^3 \cdot 16384^{-8})^6}{(8^{-12} \cdot 128)^{-14} \cdot 32768}$	

Exercise 2 (3 points)

1. How many bits do the following values contain? **Use a power-of-two notation**. Write down the result only (do not show any calculation).

2. How many bytes do the following values contain? Use binary prefixes (Ki, Mi or Gi). Choose the most appropriate prefix so that the integer numerical value will be as small as possible. Write down the result only (do not show any calculation).

Exercise 3 (4 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}). Write down the result only (do not show any calculation).

Number to Convert	Source Form	Destination Form	Result
11101101.1011	Binary	Decimal	
23F.B	Hexadecimal	Decimal	
1027.5	Decimal	Hexadecimal	
221.3125	Decimal	Binary	
335.24	Base 8	Hexadecimal	
105.34	Decimal	Base 7 (3 digits after the point)	
36	Base 9	Base 3	
1011001101.01101	Binary	Hexadecimal	

Exercise 4 (2 points)

Part 1: Encoding <u>unsigned</u> integers

1.	Let us consider the following 8-bit addition: 250 + 10 The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.
2.	Let us consider the following 8-bit subtraction: $4-10$ The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.

Midterm Exam S1 2/4

Part 2: Encoding <u>signed</u> integers

3.	Let us consider the following 8-bit addition: 120 + 10 The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.
4.	Let us consider the following 8-bit subtraction: $-126 - 10$ The two operands and the result are 8 bits wide. Write down the base-10 representation of the 8-bit result.

Exercise 5 (4 points)
Perform the operations below. Show all calculations.

Base	Base 2									I	Base 1	6									
			1	0	0	1		1	0	1	1		0				6	С	D	9	
	_			1	0	0		1	1	1	1		1		+		8	F	A	1	
														╢							
														╢							
														╢							
														<u> </u>							
Base				T				1		I					Base	8		T			
	1	0	0	0	1	1	1	1	1	0	1	1					4	2	5	7	
															+		7	7	7	7	
														-							

Midterm Exam S1 3/4

<u>E)</u>		se 6 (4 points)	ragges							
1.		mory has 8000 ₁₆ add		Г		\neg				
	How	many address lines d	loes this memory hav	ve?						
	Assur	ming that the lowest	address is 0 ₁₆ , what i	s the	highest ac	ddress (in hexadecim	nal)?			
2.	A memory has 12 address lines.									
	How	many addresses are a	available (in hexadec	eimal))?					
	Assur	ming that the lowest	address is 0 ₁₆ , what i	s the	highest ac	ddress (in hexadecim	nal)?			
3.	The n	nemory space of a m	icroprocessor is mad	le up	of 4 mem	ory devices (M1, M	2, M3 and M4). M1			
	and M	12 both have 8000 ₁₆	addresses. M3 and M	M4 bo	oth have 1	2 address lines. M1	should be located in			
		=	nory space, followed	d by l	M2 , M3 a	and M4. The lowest a	address of the mem-			
	ory sp	pace is 0.								
	Comr	olete the table below	(in hexadecimal):							
		Lowest Address	,]		Lowest Address				
	M1	Highest Address			M3	Highest Address				
	7.50	Lowest Address		1	3.5.4	Lowest Address				
	M2	Highest Address			M4	Highest Address				
Fe			nber of address lines be below if you need		ired by the	e microprocessor?				
		to use the oldlik space	e below if you need							

Midterm Exam S1 4/4