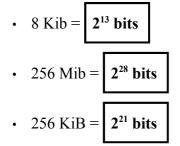
Key to Midterm Exam S1 Computer Architecture

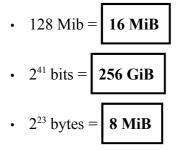
Answer on the worksheet

Duration: 1 hr 30 min.

Last name: First name: Group:


Exercise 1 (3 points)

Simplify the following expressions. Give each result in a power-of-two form. Write down the result only (do not show any calculation).


Expression	Result
$\frac{128^3 \cdot 4^7 \cdot 4^6}{(512^{-3} \cdot 64^3)^{-3}}$	2 ²⁰
$\frac{(32^4 \cdot 1024^{-3}) \cdot (190 + 66)^{-5}}{(2^{-12} \cdot (2^8 - 2^7))^5 \cdot 128^{-4}}$	2 ³
$\frac{((4096 \cdot 8^{15})^3 \cdot 16384^{-5})^4}{(16^{-4} \cdot 2048)^{-7} \cdot 65536}$	2 ³⁵³

Exercise 2 (3 points)

1. How many bits do the following values contain? <u>Use a power-of-two notation</u>. Write down the result only (do not show any calculation).

 How many bytes do the following values contain? Use binary prefixes (Ki, Mi or Gi). <u>Choose the</u> <u>most appropriate prefix so that the integer numerical value will be as small as possible</u>. Write down the result only (do not show any calculation).

Exercise 3 (4 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}). Write down the result only (do not show any calculation).

Number to Convert	Source Form	Destination Form	Result
10101101.0011	Binary	Decimal	173.1875
D7.3	Hexadecimal	Decimal	215.1875
141.3	Decimal	Hexadecimal (2 digits after the point)	8D.4C
87.1875	Decimal	Binary	101 0111.0011
3071.16	Base 8	Hexadecimal	639.38
104.28	Decimal	Base 5 (2 digits after the point)	404.12
42	Base 9	Base 3	1102
1011101101.0110111	Binary	Hexadecimal	2ED.6E

Exercise 4 (2 points)

1. Work out the value of the base b so that the identity below is true. Show all calculations.

```
124_{b} = 103_{8} \quad \mathbf{b} > \mathbf{4}
b^{2} + 2b + 4 = 8^{2} + 3
b^{2} + 2b + 4 = 67
b^{2} + 2b - 63 = 0
\Delta = 4 + 4 \times 63 = 256
\mathbf{b} = (-2 - 16) / 2 = -18 / 2 = -9
b^{2} = (-2 + 16) / 2 = 14 / 2 = 7
\mathbf{b} = \mathbf{7}
```

2. According to the identity below, determine the relation between the *a* and *b* bases and work out their smallest values. **Show all calculations.**

 $208_{a} = 808_{b}$ **a** > 8 and **b** > 8 $2a^{2} + 8 = 8b^{2} + 8$ $2a^{2} = 8b^{2}$ $a^{2} = 4b^{2}$ **a** = 2b $b_{min} = 9$ $a_{min} = 18$

Exercise 5 (4 points)

Perform the operations below. Show all calculations.

Base	2													Base	e 16						
			1	0	0	0)	1	1	0	1	1	0				3	С	2	8	
	_			1	0	1		0	1	1	()	1	+			D	8	Α	4	
					1	1	-	0	1	1	()	1		1	l	1	4	С	С	
Base	2													Bas	se 8						
	1	0	0	1	1	0	1	0	1	1	1	0					7	6	5	4	
_		1	1	1	0				1	0	1	1		+			3	2	1	0	
			1	0	1	0	1									1	3	0	6	4	
		_		1	1	1	0														
					1	1	1	0													
				_	1	1	1	0													
								0													

Exercise 6 (4 points)

1. In terms of *n*, how many *n*-bit unsigned integers can be encoded?

2^{*n*}

2. In terms of *n*, how many *n*-bit signed integers can be encoded?

 2^n

3. In terms of *n*, what is the largest *n*-bit unsigned integer that can be encoded?

2^{*n*}-1

4. In terms of n, what is the largest n-bit signed integer that can be encoded?

$2^{n-1}-1$

5. In terms of n, what is the smallest n-bit signed integer that can be encoded?

 -2^{n-1}

Feel free to use the blank space below if you need to: