Contrôle S1 – Corrigé Architecture des ordinateurs

Répondre exclusivement sur le sujet

D '		4		~	n
IIIIPAA	•	•	n	- 4	41
Durée	•		ш	J	v
	-			_	-

110111

Exercice 1 (4 points)

1. Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat
$\frac{32^8 \cdot 8^4 \cdot 128^7}{((1999 + 49)^3 \cdot 16^{-5})^5}$	2 ³⁶
$\frac{((8192 \cdot 16^{11})^5 \cdot 65536^{-8})^3}{(32^{-5} \cdot (500 + 12))^{-5} \cdot 4096}$	2 ³⁷⁹

2. Donnez, <u>en puissance de deux</u>, le nombre de bits que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).

• 128 Mib =
$$2^{27}$$
 bits

•
$$2 \text{ Kio} = \boxed{2^{14} \text{ bits}}$$

3. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre d'octets que contiennent les grandeurs suivantes. **Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière**. Le résultat seul est attendu (pas de détail).

•
$$2^{31}$$
 bits = **256 Mio**

Exercice 2 (4 points)

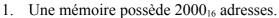
Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas $\frac{1}{4}$ ou 2^{-2}). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
11110001,0001	Binaire	Décimale	241,0625
3FA,1	Hexadécimale	Décimale	1 018,0625
125,4	Décimale	Hexadécimale (2 chiffres après la virgule)	7D,66
52,0625	Décimale	Binaire	110100,0001
6142,153	Base 8	Hexadécimale	C62,358
7,25	Décimale	Base 5 (3 chiffres après la virgule)	12,111
67	Base 9	Base 3	2021
1110101011,111011	Binaire	Hexadécimale	3АВ,ЕС

Exercice 3 (4 points)

Effectuez les opérations suivantes en binaire (les deux opérandes et le résultat sont codés sur 8 bits). Convertissez le résultat en une valeur décimale non signée et signée. Si un dépassement apparaît, écrire « ERREUR » à la place de la valeur décimale. Le résultat seul est attendu (pas de détail).

Opération Résultat binaire		Valeur o	lécimale
Opération	Resultat binaire	Non signée	Signée
01100110 - 10011011	11001011	ERREUR	ERREUR
10001100 + 01111110	00001010	ERREUR	10
01111011 + 10000011	11111110	254	-2
10010011 - 10001101	00000110	6	6


Contrôle S1 – Corrigé

Exercice 4 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Base	e 2													Base	16					
			1	0	1	1	-	0	1	1	(0	1			F	8	С	C	
	_	-		1	0	1	-	0	0	1	1	1	0	+		3	2	В	В	
				1	1	0)	0	0	1	1	1	1		1	2	В	8	7	
														<u> </u>						
Base	e 2								_					Bas	se 8					
	1	0	0	0	1	1	1	1	1	1	0	1				3	7	3	4	
_		1	1	0	1				1	0	1	1		+		4	7	2	5	
			1	0	0	1	1								1	0	6	6	1	
		_		1	1	0	1													
					1	1	0	1												
				-	1	1	0	1												
								0												

Exercice 5	(4	points)
------------	----	---------

Combien de fils d'adresse possède cette mémoire ? 13

Si l'adresse basse est 0₁₆, quelle est l'adresse haute (en hexadécimal) ?

Une mémoire possède 11 fils d'adresse.

Combien d'adresses comporte-t-elle (en hexadécimal)? **800**₁₆

Si l'adresse basse est 0₁₆, quelle est l'adresse haute (en hexadécimal) ?

3. L'espace mémoire d'un microprocesseur est constitué de quatre mémoires (M1, M2, M3 et M4). M1 et M2 possèdent 2000₁₆ adresses. M3 et M4 possèdent 11 fils d'adresse. Elles sont rangées dans l'ordre suivant : M1 puis M2, M3 et enfin M4. L'adresse basse de l'espace mémoire est 0₁₆.

Compléter le tableau ci-dessous (en hexadécimal) :

M1	Adresse basse	000016
IVII	Adresse haute	1FFF ₁₆
M2	Adresse basse	200016
1V12	Adresse haute	3FFF ₁₆

M2	Adresse basse	400016
M3	Adresse haute	47FF ₁₆
MA	Adresse basse	480016
M4	Adresse haute	4FFF ₁₆

Quel est le nombre minimum de fils d'adresse requis par le microprocesseur ?

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.					