
Algorithmics

Correction Midterm Exam #1

Undergraduate 1
st

year S1 – Epita

Solution 1 (Abstract Types: Recursive lists – 5 points)

1.
The operation search is defined only when the searched element exists. Therefore, it is a precon-
dition. Then we have the three axioms applying the observer ispresent to the internal operations
emptylist and cons. In order: the element e does not exist in an empty list, the element e exists
in a list in which it is equal to the first element and otherwise... try again (it may exist in the tail
of the list). Then the axiom explaining that the box returned by search(e,λ) is the one which
contains e.

preconditions

search(e, λ) is-defined-iaoi ispresent(e,λ)= true

axioms

ispresent (e, emptylist) = false
e = e′ ⇒ ispresent (e, cons(e′, λ)) = true
e 6= e′ ⇒ ispresent (e, cons(e′, λ)) = ispresent (e, λ)
contents(search(e, λ)) = e

2.
Two axioms suffice. The first says that the concatenation result of an empty list and a list λ is the
list λ, which means that the elements of the second list are retained in order and number. The
second axiom explains that we also keep in order and number the elements of the first list. How?
Showing that if the concatenation is done before or after building (cons) the list, the result is the
same, which means that the concatenation modifies neither the order nor the elements.

axioms

concatenate (emptylist, λ2) = λ2
concatenate (cons(e, λ), λ2) = cons(e, concatenate (λ, λ2))

Solution 2 (Deletion) – 4 points

Specifications:
Write the function delete x list that removes the first appearance of the value x (if it is present)
from the sorted (in increasing order) list list.

♯ let rec delete x = function

[] -> []

| h::q when h > x -> h :: q

| h::q when h = x -> q

| h::q -> h::delete x q ;;

val delete : ’a -> ’a list -> ’a list = <fun>

♯ delete 4 [1; 2; 2; 3; 4; 4; 4; 5];;

- : int list = [1; 2; 2; 3; 4; 4; 5]

1

Algorithmics
Correction Midterm Exam #1 – 9 Nov. 2020 - 8 : 30

Undergraduate 1st year S1

Epita

Solution 3 (Insertion at the rank i – 5 points)

Spécifications : Write the function insert_nth x i list that inserts the value x at the rank i in
the list list.
The function has to raise an exception Invalid_argument if i is negative or zero, an exception Failure

if the list is too short.

♯ let insert_nth x i list =

if i < 1 then

invalid_arg "negative rank"

else

let rec insert = function

(1, list) -> x :: list

| (_, []) -> failwith "out of bound"

| (i, e::q) -> e :: insert(i-1, q)

in

insert (i, list);;

val insert_nth : ’a -> int -> ’a list -> ’a list = <fun>

Solution 4 (Search) – 4 points

Specifications:
Write the function search_both list a b that tests whether the two distinct values a and b are in
the list list.

♯ let search v1 v2 l =

let rec aux1 v l = match l with

[] -> false

|e::l -> v = e || aux1 v l

in

let rec aux2 l = match l with

[] -> false

|e::l -> if e = v1 then

aux1 v2 l

else

if e = v2 then

aux1 v1 l

else

aux2 l

in aux2 l

;;

val search : ’a -> ’a -> ’a list -> bool = <fun>

Another version:

♯ let search v1 v2 l =

let rec aux l found1 found2 = match l with

[] -> false

|e::l -> if e = v1 then

found2 || aux l true false

else

if e = v2 then

found1 || aux l false true

2

Algorithmics
Correction Midterm Exam #1 – 9 Nov. 2020 - 8 : 30

Undergraduate 1st year S1

Epita

else

aux l found1 found2

in aux l false false

;;

val search : ’a -> ’a -> ’a list -> bool = <fun>

Solution 5 (Mystery – 2 points)

1. Specifications:
Give the results of the successive evaluations of the following phrases.

♯ let go = function

[] -> []

| e::list ->

let rec what x = function

[] -> []

| e::list -> (e * x)::(what e list)

in

what e list;;

val go : int list -> int list = <fun>

♯ go [1; 1; 1; 1; 1] ;;

- : int list = [1; 1; 1; 1]

♯ go [42] ;;

- : int list = []

♯ go [1; 2; 3; 4; 5] ;;

- : int list = [2; 6; 12; 20]

♯ go [2; 21; 2; 21; 2; 21] ;;

- : int list = [42; 42; 42; 42; 42]

3

