EPITA / InfoSup NAME :	<u>FIRSTNAME</u> :	January 2017 <u>GROUP</u> :
	Physics Midterm n°1	
Сс	alculators and documents are not allowed. Please answer only on exam sheets	
<u>Exercise 1</u> Cycloida <u>Part A</u>	l motion (7 points)	
$\begin{cases} x(t) = A(\omega . t - \sin(\omega . t)) \\ y(t) = A(1 - \cos(\omega . t)) \end{cases}$	$(\theta = \omega t)$; where A and ω are positive c	onstants.
1- Write the Cartesian compone	nts of velocity and acceleration vectors.	
2- Deduce norms of both vector	s. Useful formula : $1 - \cos(\alpha) = 2.\sin^2(\alpha/2)$	2).

	the values : $t = 0$; $t = T/4$; $t = T/2$; $t = 3T/4$; $t = T$).
Part B	
<u>arı d</u>	
ne considers	spiral motion described by the following equations:
$o(t) = o_0 e^{\omega t}$	
$\theta(t) = \omega t$	where ρ_0 and ω are positive constants.
•	
- Express the	velocity vector of this motion in polar coordinates. One reminds you that:
	$\vec{V} = \stackrel{\bullet}{\rho} \vec{u}_{\rho} + \rho \stackrel{\bullet}{\theta} \vec{u}_{\theta}$

2- Write the norm of velocity vector.			
3-a) Remembering that in Frenet's basis $\vec{V} = V \cdot \vec{u}_T = R(t) \dot{\theta} \vec{u}_T$, express the radius R(t) of that trajector			
b) Deduce from it the components of acceleration vector $\vec{a}(a_T, a_N)$ in Frenet's basis (\vec{u}_T, \vec{u}_N) .			

Exercise 2 System at equilibrium (6 points)

A homogeneous horizontal beam OA of length L and mass m = 40 kg is fixed to a wall at its tip O. A cable AB, whose mass is neglected and length is fixed, connects the wall and the tip A of the beam. A mass M = 150 kg is hung at point A. Given data: BAO = 30° and g = 10m.s⁻².

1- Write explicitly which exterior forces are acting on the beam. Sketch them.		
2- a) Write the rotation equilibrium condition with respect to point O and deduce then the norm of		
cable stress.		
b) Use translation equilibrium condition to write the components (R_x, R_y) of \vec{R}_{wall} .		

c) Compute the norm of the reaction \vec{R}_{wall} .
Exercise 3 (7 points)
A pointlike solid of mass m is moving on the path sketched below. Part AB is circular with radius R, angle θ and center O while BC is horizontal. The solid is thrown from point A with a velocity V_A tangential to the circle.
A O
\vec{v}_A B C
1-a) Write all exterior forces acting on solid between A and B by assuming that frictions over part AB can be modelized by a constant force f. Sketch them.
b) Use kinetic energy theorem between A and B in order to express the friction force f as function of R, g, V_A , V_B , m and θ . Compute numerically with $m = 0.1 \text{kg}$, $g = 10 \text{ms}^{-2}$, $R = 1.5 \text{m}$, $V_A = 2 \text{ms}^{-1}$, $V_B = 2 \text{ms}^{-1}$
3ms^{-1} ; $\theta = 60^{\circ} \approx 1 \text{ rad.}$

BC = 2m.	with
b) Compute the norm of the total reaction \vec{R} which is acting on solid over path BC.	 1