Brief correction of midterm $n^{\circ} 1$ in Physics

Exercise I

Part A

1) You had to derive with respect to time the functions $\left\{\begin{array}{c}x(t)=A(\omega t-\sin (\omega t)) \\ y(t)=A(1-\cos (\omega t))\end{array}\right.$

Just few comments about notations for velocity and acceleration components. \vec{v} is a vector which in Cartesian basis can be written as $\vec{v}=v_{x} \overrightarrow{u_{x}}+v_{y} \overrightarrow{u_{y}}$ where $\left(v_{x}, v_{y}\right)$ are the components.

Another notation is the system $\left\{\begin{array}{c}v_{x}=\dot{x}(t)=A \omega(1-\cos (\omega t)) \\ v_{y}=\dot{y}(t)=A \omega \sin (\omega t)\end{array}\right.$. Note that there no arrow on vector components!
The acceleration reads $\left\{\begin{array}{l}a_{x}=\ddot{x}(t)=A \omega^{2} \sin (\omega t) \\ a_{y}=\ddot{y}(t)=A \omega^{2} \cos (\omega t)\end{array}\right.$.
2) The norm of velocity vector reads $\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{A^{2} \omega^{2}(1-\cos (\omega t))^{2}+A^{2} \omega^{2} \sin ^{2}(\omega t)}$

Then after simplification $\|\vec{v}\|=A \omega \sqrt{1-2 \cos (\omega t)+\cos ^{2}(\omega t)+\sin ^{2}(\omega t)}=A \omega \sqrt{4 \sin ^{2}\left(\frac{\omega t}{2}\right)}$

$$
\|\vec{v}\|=2 A \omega \sin \left(\frac{\omega t}{2}\right)
$$

For acceleration, it's easier $\|\overrightarrow{\boldsymbol{a}}\|=\boldsymbol{A} \boldsymbol{\omega}^{\mathbf{2}}$.
3) Here pay attention on variables. We were looking for graph $(y=f(x))$, the so-called cycloid. Just brief notation: $t_{k}=k \cdot \frac{T}{4}=\frac{2 \pi k}{\omega} \frac{1}{4}$ and for the question $k \in \llbracket 0,8 \rrbracket$.

Part B

1) We were studying the polar coordinates $\left\{\begin{array}{c}\rho(t)=\rho_{0} e^{\omega t} \\ \theta(t)=\omega t\end{array}\right.$. The velocity vector can be written as $\vec{v}=\dot{\rho} \overrightarrow{u_{\rho}}+\rho \dot{\theta} \overrightarrow{u_{\theta}}=\rho_{O} \omega e^{\omega t} \overrightarrow{u_{\rho}}+\rho_{o} \omega e^{\omega t} \overrightarrow{u_{\theta}}=\boldsymbol{\rho}(\boldsymbol{t}) \boldsymbol{\omega}\left(\overrightarrow{\boldsymbol{u}_{\boldsymbol{\rho}}}+\overrightarrow{\boldsymbol{u}_{\boldsymbol{\theta}}}\right)$.
2) By definition the norm of \vec{v} is $\|\vec{v}\|=\sqrt{v_{\rho}^{2}+v_{\theta}^{2}}=\rho(t) \omega\left\|\overrightarrow{u_{\rho}}+\overrightarrow{u_{\theta}}\right\|=\boldsymbol{\rho}(\boldsymbol{t}) \boldsymbol{\omega} \sqrt{\mathbf{2}}=\boldsymbol{v}$.
3) We recall that $\vec{v}=v \overrightarrow{u_{T}}=R(t) \dot{\theta} \overrightarrow{u_{T}}=R(t) \omega \overrightarrow{u_{T}}$ where $\left(\overrightarrow{u_{T}}, \overrightarrow{u_{N}}\right)$ is the Frenet's basis. Please here do NOT divide by unitary vector $\overrightarrow{u_{T}}$! It doesn't exist, no meaning!
Then one deduces $R(t)=\frac{v}{\omega}=\rho(t) \sqrt{2}$.
4) In Frenet's basis acceleration components reads $\left\{\begin{array}{l}a_{T}=\frac{d v}{d t}=\rho(t) \omega^{2} \sqrt{2} \\ a_{N}=\frac{v^{2}}{R}=\rho(t) \omega^{2} \sqrt{2}\end{array}\right.$ by using expression of v found in question 2.

Exercise II

1) First we define the studied system, namely here the beam. Four forces are acting on beam:
1° wall reaction \vec{R} at point O
2° weight of beam $m \vec{g}$ acting at center-of-mass G
3° weight \vec{P} of mass M acting at point A
4° cable stress \vec{S} pointing from A to B
2) a) The rotation equilibrium with respect to O reads

$$
\overrightarrow{0}=\sum \overrightarrow{\mathcal{M}}_{o}\left(\vec{F}_{\text {ext }}\right)=\overrightarrow{\mathcal{M}}_{o}(\vec{P})+\overrightarrow{\mathcal{M}}_{o}(\vec{S})+\overrightarrow{\mathcal{M}}_{o}(\vec{R})+\overrightarrow{\mathcal{M}}_{o}(m \vec{g})
$$

By definition $\overrightarrow{\mathcal{M}}_{O}(\vec{R})=\overrightarrow{O O} \wedge \vec{R}=\overrightarrow{0}$ and using same formula one gets
$\overrightarrow{0}=O G \cdot m g \cdot \sin \left(-\frac{\pi}{2}\right) \overrightarrow{u_{z}}+O A \cdot M g \cdot \sin \left(-\frac{\pi}{2}\right) \overrightarrow{u_{z}}+O A \cdot S \cdot \sin \left(\pi-\frac{\pi}{6}\right) \overrightarrow{u_{z}}$
Beware that this is a vector equality! After projection on $\overrightarrow{u_{z}}$ and simplification ($O A=L$)

$$
\begin{gathered}
0=-\frac{L}{2} \cdot m g-M g L+L \cdot S \cdot \sin \left(\frac{\pi}{6}\right) \\
\boldsymbol{S}=\boldsymbol{m g}+\mathbf{2 M g}=\mathbf{3 4 0 0} \boldsymbol{N}
\end{gathered}
$$

b) The translation equilibrium is the usual Newton's second law $\overrightarrow{0}=\sum \vec{F}_{\text {ext }}$.

After projecting on x - and y -axes

$$
\left\{\begin{array} { c }
{ 0 = R _ { x } - S \cdot \operatorname { c o s } (\frac { \pi } { 6 }) } \\
{ 0 = R _ { y } + S \cdot \operatorname { s i n } (\frac { \pi } { 6 }) - m g - M g }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\boldsymbol{R}_{x}=S \cdot \frac{\sqrt{3}}{2}=1700 \sqrt{3} N \\
\boldsymbol{R}_{\boldsymbol{y}}=-\frac{S}{2}+\boldsymbol{m g}+\boldsymbol{M g}=200 \mathrm{~N}
\end{array}\right.\right.
$$

c) Finally the norm is equal to $\left\|\overrightarrow{\boldsymbol{R}_{\text {wall }}}\right\|=\sqrt{\boldsymbol{R}_{x}^{2}+\boldsymbol{R}_{y}^{2}}=\sqrt{\mathbf{8 7 1 0 0 0 0}} \boldsymbol{N}$

Exercise III

1) a) Please do not consider the velocity vector $\overrightarrow{v_{A}}$ sketch above as a force! The only forces are the weight \vec{P}, the ground reaction \vec{R} and the friction force \vec{f}.
b) The kinetic energy theorem reads for path $A B \boldsymbol{\Delta}_{\boldsymbol{A} \rightarrow \boldsymbol{B}} \boldsymbol{E}_{\boldsymbol{k}}=\mathcal{W}_{\boldsymbol{A} \rightarrow \boldsymbol{B}}(\overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{P}}+\overrightarrow{\boldsymbol{f}})(\boldsymbol{E})$.

Then using definition of work: $\mathcal{W}_{A \rightarrow B}(\vec{R}+\vec{P}+\vec{f})=\int_{A}^{B}(\vec{R}+\vec{P}+\vec{f}) \cdot \overrightarrow{d l}$ where $\overrightarrow{d l}$ is an infinitesimal shift along the trajectory.
This means that $\overrightarrow{d l}$ is a length element tangent to the local point where we are integrating. Between A and B , the mass has a circular motion which can be described by polar coordinates and basis $\left(\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}}\right)$, thus $\overrightarrow{d l}=R d \theta \overrightarrow{u_{\theta}}$ here.
What's more \vec{R} is orthogonal to motion (we consider this force as the normal ground reaction, the total reaction is given in last question) which implies that $\vec{R} \cdot \overrightarrow{d l}=0$ at any point of the trajectory.
For friction force \vec{f} we have claimed that \vec{f} is collinear to $\vec{v}=R \dot{\omega} \overrightarrow{u_{\theta}}$ but with opposite orientation. So $\vec{f} \cdot \overrightarrow{d l}=-f . R . d \theta$ and $\int_{A}^{B} d \theta=\theta_{B}-\theta_{A}=\theta$.
Last force \vec{P} : conservative force so use the property $\mathcal{W}_{A \rightarrow B}(\vec{P})=-\Delta_{A \rightarrow B} E_{p}(\vec{P})=m g\left(z_{A}-z_{B}\right)$
Finally, the first equation (\boldsymbol{E}) reads $\frac{1}{2} m\left(v_{B}^{2}-v_{A}^{2}\right)=m g\left(z_{A}-z_{B}\right)-f R \theta$
Reference frame is chosen such that $z_{B}=0$.
So $f=\frac{1}{R \theta}\left(\operatorname{mgR}(1-\cos (\theta))-\frac{1}{2} m\left(v_{B}^{2}-v_{A}^{2}\right)\right)=\frac{1}{\frac{3}{2}}\left(\left(1-\frac{1}{2}\right) \cdot \frac{3}{2}-\frac{1}{2} \cdot 0,1 .(4-9)\right)=0,34 \mathrm{~N}$
2) a) Between B and C weight is not working because z is constant. Kinetic energy theorem reads now $\Delta_{B \rightarrow C} E_{k}=\mathcal{W}_{B \rightarrow C}(\vec{f})$. Please read question before solving any exercise! Here frictions \vec{f} are known and $\overrightarrow{v_{C}}$ must be expressed as function of f.
Writing explicitly the previous equation gives the answer: $\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}\left(\boldsymbol{v}_{\boldsymbol{C}}^{2}-\boldsymbol{v}_{\boldsymbol{B}}^{2}\right)=-\boldsymbol{f} . \boldsymbol{B C}$ and numerically $v_{C}=\sqrt{5} \boldsymbol{m} . s^{-1}$
b) The total reaction $\overrightarrow{R_{t o t}}$ takes both normal reaction \vec{R} and frictions \vec{f} into account: $\overrightarrow{\boldsymbol{R}}_{\boldsymbol{t o t}}=\overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{f}}$. These two forces are orthogonal so the norm is simply given by $\left\|\overrightarrow{\boldsymbol{R}_{\boldsymbol{t o t}}}\right\|=\sqrt{\boldsymbol{R}^{2}+\boldsymbol{f}^{\mathbf{2}}}=\sqrt{\mathbf{1}, \mathbf{0 1}} \approx \mathbf{1} \mathbf{N}$

