Correction S1 B2 ASI

Exercice 1 : intégrales

1. Remplir le tableau ci-dessous (sans se soucier du domaine de définition des fonctions). f désigne la fonction et F est une primitive de f.

f(x) =	$\ln(2)$	$x^4 + 2x$	$\frac{e^{\sqrt{x}}}{\sqrt{x}}$	$\sin(x)$	$1 + \tan^2(x)$	$\frac{1}{x^2}$	\sqrt{x}	$\frac{x^5}{x^6+1}$
F(x) =	$x \ln(2)$	$\frac{x^5}{5} + x^2$	$2e^{\sqrt{x}}$	$-\cos(x)$	$\tan(x)$	$-\frac{1}{x}$	$\frac{2x^{\frac{3}{2}}}{3}$	$\frac{1}{6}\ln(x^6+1)$

2. Via une intégration par parties dont vous énoncerez la formule générale, calculer $J = \int_0^1 (3x+1)e^{2x} dx$.

On pose
$$u(x) = 3x + 1$$
 et $v'(x) = e^{2x}$ de sorte que $u'(x) = 3$ et $v(x) = \frac{e^{2x}}{2}$. On a

$$J = \int_0^1 u(x)v'(x) \, \mathrm{d}x$$

$$= [u(x)v(x)]_0^1 - \int_0^1 u'(x)v(x) dx$$

$$= \left[\frac{(3x+1)e^{2x}}{2} \right]_0^1 - \frac{3}{2} \int_0^1 e^{2x} \, \mathrm{d}x$$

$$= 2e^2 - \frac{1}{2} - \frac{3}{2} \left[\frac{e^{2x}}{2} \right]_0^1 = 2e^2 - \frac{1}{2} - \frac{3e^2}{4} + \frac{3}{4} = \frac{5e^2 + 1}{4}$$

$$3. \ \ Calculer \ K = \int_0^{\ln(\sqrt{3})} \frac{1}{e^{-t} + e^t} \ dt \ en \ posant \ x = e^t.$$

 $x = e^t \iff t = \ln(x)$. Ainsi, $dt = \frac{1}{x}dx$. De plus, si $t = \ln(\sqrt{3})$, $x = e^{\ln(\sqrt{3})} = \sqrt{3}$ et si t = 0, $x = e^0 = 1$. Ainsi,

$$K = \int_{1}^{\sqrt{3}} \frac{1}{\frac{1}{x} + x} \times \frac{1}{x} dx = \int_{1}^{\sqrt{3}} \frac{1}{1 + x^{2}} dx = \left[\arctan(x)\right]_{1}^{\sqrt{3}} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$$

Exercice 2 : suites adjacentes

Soient (u_n) et (v_n) deux suites définies pour tout entier naturel $n \ge 2$ par : $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!}$

1. Après avoir rappelé la définition, montrer que les suites (u_n) et (v_n) sont adjacentes.

 (u_n) et (v_n) sont adjacentes si (u_n) est croissante, (v_n) est décroissante et $\lim_{n\to+\infty}v_n-u_n=0$.

•
$$u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$$
. Ainsi, (u_n) est croissante.

$$\bullet v_{n+1} - v_n = u_{n+1} + \frac{1}{(n+1)!} - u_n - \frac{1}{n!}$$

$$= \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!}$$

$$= \frac{2}{(n+1)!} - \frac{1}{n!} = \frac{2}{(n+1)!} - \frac{n+1}{n!(n+1)}$$

$$= \frac{2-n-1}{(n+1)!} = \frac{1-n}{(n+1)!}$$

Comme $n \geq 2$, $v_{n+1} - v_n \leq 0$. Ainsi, (v_n) est décroissante.

• $\lim_{n\to +\infty} v_n - u_n = \lim_{n\to +\infty} \frac{1}{n!} = 0.$ On a bien montré que les deux suites sont adjacentes.

2. La suite (u_n) est-elle convergente? Justifiez votre réponse.

Étant donné que les suites (u_n) et (v_n) sont adjacentes, on sait qu'elles convergent (en plus vers une même limite ℓ). Donc, la suite (u_n) converge.

3. La suite (u_n) est-elle majorée? Justifier.

Toute suite convergente est bornée, donc (u_n) est bornée. Elle est donc majorée.

Exercice 3 : comparaison de suites

Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en citant toutes les comparaisons possibles et en justifiant vos réponses.

1.
$$u_n = 1 - 2n^2$$
 et $v_n = -2n^2 + n - 3$.

$$\frac{u_n}{v_n} = \frac{-2n^2\left(-\frac{1}{2n^2} + 1\right)}{-2n^2\left(1 - \frac{1}{2n} + \frac{3}{2n^2}\right)} = \frac{-\frac{1}{2n^2} + 1}{1 - \frac{1}{2n} + \frac{3}{2n^2}}$$

On en déduit que $\lim_{n\to+\infty}\frac{u_n}{v_n}=1$. Donc, $u_n\sim v_n$. Comme la suite $\left(\frac{u_n}{v_n}\right)$ converge, elle est bornée. On a alors également : $u_n = O(v_n)$

2.
$$u_n = e^{2n} - \sqrt{n}$$
 et $v_n = n + 1$.

$$\frac{u_n}{v_n} = \frac{e^{2n} \left(1 - \frac{\sqrt{n}}{e^{2n}}\right)}{n \left(1 + \frac{1}{n}\right)} = \frac{e^{2n}}{n} \times \frac{1 - \frac{\sqrt{n}}{e^{2n}}}{1 + \frac{1}{n}}$$

 $\text{Par croissance compar\'ee, } \lim_{n \to +\infty} \frac{e^{2n}}{n} = +\infty, \\ \lim_{n \to +\infty} \frac{n}{e^{2n}} = 0 \text{ et } \lim_{n \to +\infty} \frac{\sqrt{n}}{e^{2n}} = 0 \text{ . Ainsi, } \\ \lim_{n \to +\infty} \frac{u_n}{v_n} = +\infty \text{ d'où } \lim_{n \to +\infty} \frac{v_n}{u_n} = 0 \text{ et } \\ \lim_{n \to +\infty} \frac{\sqrt{n}}{e^{2n}} = 0 \text{ . Ainsi, } \\ \lim_{n \to +\infty} \frac{u_n}{v_n} = +\infty \text{ d'où } \\ \lim_{n \to +\infty} \frac{v_n}{u_n} = 0 \text{ et } \\ \lim_{n \to +\infty} \frac{v_n}{e^{2n}} = 0 \text{ et } \\ \lim_{n \to +\infty} \frac{v_n}{e^$

- 0. Par conséquent, $v_n = o(u_n)$. Comme la suite $\left(\frac{v_n}{u_n}\right)$ converge, elle est bornée. On a aussi $v_n = O(u_n)$.
- 3. $u_n = 4^n + 1$ et $v_n = 5^n$

$$\frac{u_n}{v_n} = \left(\frac{4}{5}\right)^n + \frac{1}{5^n}$$

 $\text{Comme } -1 < \frac{4}{5} < 1 \text{ et } 5 > 1, \\ \lim_{n \to +\infty} \left(\frac{4}{5}\right)^n = 0 \text{ et } \lim_{n \to +\infty} 5^n = +\infty, \\ \lim_{n \to +\infty} \frac{u_n}{v_n} = 0. \text{ Par conséquent}, \\ u = o(v_n). \text{ Comme } 1 = 0. \\ \lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$ la suite $\left(\frac{u_n}{v_n}\right)$ converge, elle est bornée. On a aussi $u_n = O(v_n)$.

Exercice 4: cours

- 1. Énoncer rigoureusement le théorème des gendarmes.
- 2. Démontrer le théorème des gendarmes.

Voir le pdf des démonstrations...

Exercice 5 : Étude d'une suite

Soit (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{u_n + 8}$.

N.B. : les questions 1. et 2. sont indépendantes...

- 1. (a) Montrer (par récurrence) que pour tout $n \in \mathbb{N}$, $u_n > 0$.
 - $u_0 = 1 > 0$ donc la propriété est vraie au rang 0.
 - Supposons la propriété vraie à un rang n. On a $u_n > 0$. Comme $u_{n+1} = \frac{u_n}{u_n + 8}$, on a ainsi, $u_{n+1} > 0$. La propriété est donc vraie au rang n + 1.
 - En conclusion, $\forall n \in \mathbb{N}, u_n > 0$
 - (b) Supposons que la suite (u_n) converge vers un réel ℓ . Quelles sont les valeurs possibles de ℓ ?

Soit $f: x \mapsto \frac{x}{x+8}$. f est continue sur \mathbb{R}^{+*} . On sait alors que $\ell = f(\ell)$. Cela donne $\ell = \frac{\ell}{\ell+8}$ ce qui équivaut à $\ell^2 + 8\ell = \ell$ c'est-à-dire $\ell(\ell+7) = 0$. Donc, si la suite converge, elle converge vers 0 ou -7.

(c) Étudier la monotonie de la suite (u_n) .

On a
$$u_{n+1} - u_n = \frac{u_n - u_n(u_n + 8)}{u_n + 8} = -\frac{u_n^2 + 7u_n}{u_n + 8} = -\frac{u_n(u_n + 7)}{u_n + 8} \le 0 \text{ car } \forall n \in \mathbb{N}, u_n > 0.$$

Le suite (u_n) est donc décroissante.

(d) La suite (u_n) est-elle convergente? Si oui, préciser sa limite.

La suite (u_n) est décroissante et minorée par 0 donc elle converge. Notons ℓ sa limite. On sait que $\ell=0$ ou -7. Or $\forall n \in \mathbb{N}, u_n > 0$. En faisant tendre n vers $+\infty$, on en déduit que $\ell \geq 0$. Donc $\ell=0$.

- 2. Soit la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = 1 + \frac{7}{u_n}$.
 - (a) Montrer que la suite (v_n) est géométrique de raison 8. En déduire l'expression de v_n en fonction de n.

Soit
$$n \in \mathbb{N}$$
. On a $v_{n+1} = 1 + \frac{7}{u_{n+1}} = 1 + \frac{7(u_n + 8)}{u_n} = 1 + 7 + \frac{56}{u_n} = 8 + \frac{56}{u_n} = 8\left(1 + \frac{7}{u_n}\right) = 8v_n$.

Ainsi, la suite (v_n) est géométrique de raison 8. D'où, pour tout entier naturel $n, v_n = v_0 \times 8^n = 8 \times 8^n = 8^{n+1}$.

(b) En déduire l'expression de u_n en fonction de n.

On a
$$u_n = \frac{7}{v_n - 1} = \frac{7}{8^{n+1} - 1}$$
.

- $(c) \ \textit{En utilisant la question précédente, retrouvez vous le résultat obtenu dans la question 1.(d)?}$
 - Comme 8 > 1, $\lim_{n \to +\infty} 8^{n+1} = +\infty$. Donc $\lim_{n \to +\infty} u_n = 0$. On retrouve bien le résultat de la question 1.(d).

Exercice 6: suites extraites

Soit (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n} \sum_{k=0}^{n-1} (-1)^k$.

1. Trouver les expressions de u_{2n} et u_{2n+1} en fonction de n.

Pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n} \times \frac{1 - (-1)^n}{1 - (-1)} = \frac{1 - (-1)^n}{2n}$ (somme des termes d'une suite géométrique de raison -1).

Ainsi,
$$u_{2n} = 0$$
 et $u_{2n+1} = \frac{2}{4n+2} = \frac{1}{2n+1}$.

2. La suite (u_n) est-elle convergente? Si oui, donner sa limite.

Comme $\lim_{n\to+\infty}u_{2n}=\lim_{n\to+\infty}u_{2n+1}=0$, les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite 0. Donc la suite (u_n) converge vers 0.