

Exam Electronics

Study of Sinusoidal steady state [SI-S1-ELEC-2-ERS]Calculators and documents are forbidden. Scoring scale is aiven as a quide

Answers exclusively on the subject. If you need more space, you can use the back of the pages.

Exercice 1. MCQ (4 points – No negative score)

For each question, choose the right answer:

1. In a capacitor, what is the phase shift of the voltage with respect to the current?

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

- *c.* $-\pi$
- d. $\pm \frac{\pi}{2}$ depending on frequency

- 2. What is the unit of the product $C\omega$?
 - a. Siemens
- b. Hertz
- c. Amperes
- d. Ohms
- 3. What is the modulus of the complex amplitude if a sinusoidal signal?
 - a. The ratio between peak values
- c. The signal RMS value
- b. The signal instantanoeus value
- d. The phase at time's origin
- 4. What is the argument of the complex impedance of a dipole?
 - a. The ratio between peak values.
 - b. The phase shift of the current with respect to the voltage.
- c. The phase shift of the voltage with respect to the current.
- d. The phase at time's origin.

Consider a 1st order filter. We note $\underline{T}(\omega)$ its transfer function, $A(\omega)$, its amplification and $G(\omega)$, its gain in dB.

- 5. What is the ratio of the complex amplitude of the output voltage over the complex amplitude of the input voltage?
 - a. The gain $G(\omega)$

c. The transfer function $T(\omega)$

b. The amplification $A(\omega)$

- d. None of this
- 6. $arg(\underline{T}(\omega))$ is the phase shift of the output voltage with respect to the input voltage.
 - a. TRUE

b. FALSE

Consider the diagram on the left where $e(t) = E \cdot \sqrt{2} \cdot \sin(\omega t)$. We want to find the Thevenin equivalent seen by the resistor R. In complex representation, we obtain the diagram on the right (Q7&8)

7. What is the formula for E_{th} ?

a-
$$\underline{E}_{th} = \frac{L}{C(1-LC\omega^2)}E$$

b-
$$\underline{E}_{th} = E$$

c-
$$\underline{E}_{th} = \frac{1}{1 - LC\omega^2} E$$

d-
$$\underline{E}_{th} = -\frac{LC\omega^2}{1-LC\omega^2}E$$

8. What is the formula for \underline{Z}_{th} ?

a-
$$\underline{Z}_{th} = \frac{LC}{L+C}$$

b-
$$\underline{Z}_{th} = \frac{jL\omega}{1+LC\omega^2}$$

c-
$$\underline{Z}_{th} = \frac{1 - LC\omega^2}{jC\omega}$$

d-
$$\underline{Z}_{th} = \frac{jL\omega}{1-LC\omega^2}$$

Exercice 2. Sinusoidal steady state: Study of a filter (7 points)

Consider the diagram below:

- 1. Qualitative study:
 - a. Draw the equivalent scheme of the filter at Very Low Frequencies (VLF). Deduce the limit of filter amplification $A(\omega)$ at VLF.

EPITA / InfoS1 January 2024

	b. Draw the equivalent scheme of the filter at Very High Frequencies (VHF). Deduce the limit of filter amplification $A(\omega)$ at VHF.		
	c.	Conclude on the filter type.	
2.	Qua	ntitative study:	
	_	Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	
		Determine the transfer function. Deduce the cut-off pulsation.	

EPITA / InfoS1

Exercice 3. Sinusoidal steady state: Study of a filter (9 points)

Consider the diagram below:

1. Qualitative study:

a.	Draw the equivalent scheme of the filter at Very Low Frequencies (VLF). Deduce the limit of the output voltage $v_{\!\scriptscriptstyle S}$ at VLF.		

b.	Draw the equivalent scheme of the filter at Very High Frequencies (VHF). Deduce the limit of
	the output voltage $v_{\scriptscriptstyle S}$ at VHF.

c.	Conclude on the filter type and order.
----	--

d.	 d. What type of filter is obtained filtre when coil and capacitor positions are inverses? Justify your answer. 	
2. <u>Q</u> ı	antitative study:	, ——
a.	Find $\underline{E_{th}}$ and $\underline{Z_{th}}$ so that the previous diagram (Figure 1) is	Z_{th}

a. Find $\underline{E_{th}}$ and $\underline{Z_{th}}$ so that the previous diagram (Figure 1) is equivalent to the diagram on the opposite. Detail your solution.

Figure 2

EPITA / InfoS1 January 2024

b.	Using the diagram in la figure 2, give the expression of the complex amplitude $\underline{V_S}$ associated to the voltage $v_S(t)$ in terms of $\underline{E_{th}}$ and $\underline{Z_{th}}$, then, in terms of R , L , C , ω and $\underline{V_E}$.
	Deduce the filter transfer function.
c.	Put the transfer function under standardized form and deduce the pulsation ω_0 and the damping coefficient σ . You will find the filter transfer functions in appendix.

EPITA / InfoS1 January 2024

Standardized forms of transfer functions

Filter type	Order 1	Order 2
Low Pass	$\underline{T}(\omega) = A_{Max}. \frac{1}{1+j\frac{\omega}{\omega_c}}$ with : $A_{Max} = A_{VLF}$ $\omega_c = \text{Cut-off pulsation}$	$\underline{T}(\omega) = A_0. \frac{1}{1 + 2j\sigma \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ with : $A_0 = A_{VLF}$
High Pass	$\underline{T}(\omega) = A_{Max} \cdot \frac{j \frac{\omega}{\omega_c}}{1 + j \frac{\omega}{\omega_c}}$ with : $A_{Max} = A_{VHF}$ $\omega_c = \text{Cut-off pulsation}$	$\underline{T}(\omega) = A_0. \frac{-\left(\frac{\omega}{\omega_0}\right)^2}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ with : $A_0 = A_{VHF}$
Band Pass		$\underline{T}(\omega) = A_0. \frac{2j\sigma\frac{\omega}{\omega_0}}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ with : $A_0 = A_{Max}$