EPITA	/	InfoS1
-------	---	--------

NOM: Prénom:

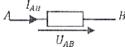
Janvier 2018

Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

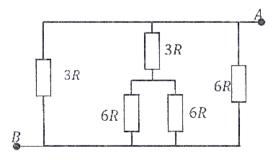

Exercice 1. Questions de cours : QCM (6 points – pas de point négatif)

Entourez la ou les bonnes réponses.

- 1. Le courant qui sort d'un générateur (de courant ou de tension) est nécessairement plus grand que celui qui y entre.
 - a- VRAI

b- FAUX

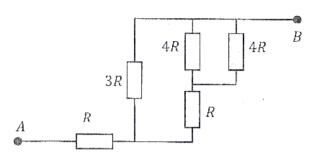
2. On considère le schéma suivant (plusieurs réponses) :

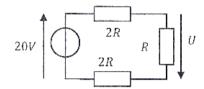

- a- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de signes opposés
- b- Le dipôle est un dipôle générateur si I_{AB} et U_{AB} sont de même signe
- c- Le dipôle est un dipôle récepteur si I_{AB} et U_{AB} sont de même signe
- d- Le fléchage courant/tension correspond à la convention générateur.
- 3. Si on applique la loi d'Ohm avec la résistance en $k\Omega$ et le courant en mA, on obtient directement la tension en :
 - a- A

b- mA

b- V

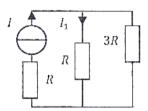
c- MV


- 4. Quelle est la résistance vue entre A et B?
 - a. 3R
 - b. R
 - c. $\frac{3}{2}R$
 - d. $\frac{2}{3}R$

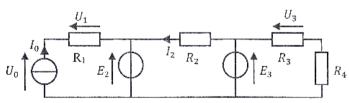

5. Quelle est la résistance vue entre A et B?

- b. $\frac{3}{5}R$
- c. $\frac{5}{2}R$
- d. $\frac{5}{3}R$

6. Soit le circuit ci-contre. Que vaut U?


7. Quelle est la bonne formule?

a-
$$I_1 = \frac{3}{5}$$
. I


c-
$$I_1 = \frac{3}{4} I$$

b-
$$I_1 = \frac{I}{4}$$

$$d- I_1 = \frac{3R}{4}I$$

Soit le circuit suivant avec I_0 , E_2 , E_3 , R_1 , R_2 , R_3 , R_4 supposés connus.

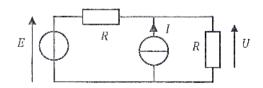
8. Quelles sont les affirmations fausses ? (2 réponses)

a- I_2 ne dépend pas de R_3

c-
$$U_1 = R_1 \cdot I_0$$

b- I_0 dépend de R_1

d- U_0 ne dépend pas de R_1


9. Soit le circuit ci-contre : Quelle est l'expression de *U*?

a-
$$U = R.I$$

$$c-U = E + I$$

b-
$$U = \frac{E}{2}$$

d-
$$U = \frac{E+RJ}{2}$$

10. Un générateur de tension E en série avec une résistance R est équivalent à un générateur de courant I en parallèle avec une résistance r si :

a-
$$R.E = \frac{R}{r}I$$
 et $r = R$

a-
$$E = R.I$$
 et $I = \frac{E}{\binom{R+r}{R.r}}$

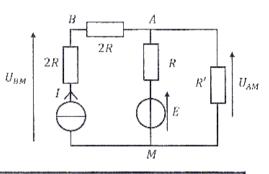
b-
$$r = R$$
 et $E = R.I$

b-
$$R = r \operatorname{et} E = \frac{I}{R}$$

11. Quelle est la formule fausse ? (E_i et U en Volts, l_i en Ampères, R_i en Ohms)

a.
$$I = \frac{R_1}{R_1 + R_2} I_1$$

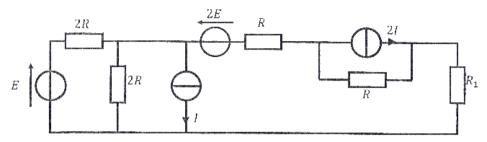
c.
$$U = \frac{R_1.E_1 - R_2.I_2}{R_1.R_2 + R_1.R_3 + R_2.R_3}$$


b.
$$U = \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot I_1$$

d.
$$U = \frac{E}{\frac{R_1 + R_3}{R_2 + R_4 + 1}}$$

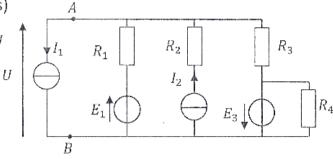
Exercice 2. Théorème de Thévenin (5 points)

Soit le circuit suivant, dans lequel E, I et R sont connus. Les générateurs sont indépendants.


 Déterminer le générateur de Thévenin vu par R'.

2.	. Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	. Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R^\prime=R$.
2.	Déterminer alors la tension U_{AM} si $R'=R$.
	Déterminer alors la tension U_{AM} si $R^\prime=R$.

Exercice 3. Théorèmes (7 points)


Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

<u>Exercice 4.</u>	Théorème	de Millman	(2 points)	
				 -

On considère le circuit ci-contre. Déterminez ${\it U}$ en utilisant le théorème de Millman.

