Final Exam S1 Computer Architecture Duration: 1 hr. 30 min. | _ | | _ | |------------|-------------|----------| | Last name: | First name: | Group: | | | | _ | # Write answers only on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink. #### Exercise 1 (2 points) Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2 $\frac{2}{3}$). | Number to Convert | Source Form | Destination Form | Result | |-------------------|-------------|------------------|--------| | 110111011.01101 | Binary | Decimal | | | A34.68 | Hexadecimal | Decimal | | | 528 | Decimal | Base 5 | | | 375.25 | Base 8 | Hexadecimal | | # Exercise 2 (5 points) Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value. | Onevetion | Diagonal December | Decimal Value | | | |---------------------|-------------------|---------------|--------|--| | Operation | Binary Result | Unsigned | Signed | | | 10010111 - 10101101 | | | | | | 01010010 + 11001101 | | | | | | 00110110 - 10111100 | | | | | | 10010001 - 10000010 | | | | | | 01000111 + 01001100 | | | | | Final Exam S1 1/4 ### Exercise 3 (6 points) For the whole exercise, the variables from *S1* to *S6* can be either 0 or 1. Complete the Karnaugh maps below (circles included) and give their most simplified expressions. **No points will be given to an expression if its Karnaugh map is wrong.** - 1. Let us consider *N*, a 3-bit binary number (*C*, *B*, *A*). *A* is the least significant bit. - S1 = 1 when N = 1, 3, 4, 5 - S2 = 1 when N = 0, 2, 4, 5, 6, 7 | 72 | | | В | Α | | |-----|----|----|----|----|----| | | S1 | 00 | 01 | 11 | 10 | | _ [| 0 | | | | | | 3 | 1 | | | | | $$S2 =$$ - 2. Let us consider *N*, a 4-bit binary number (*D*, *C*, *B*, *A*). *A* is the least significant bit. - S3 = 1 when N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15 - S4 = 1 when N = 0, 1, 4, 6, 8, 9, 12, 14 - S5 = 1 when N = 5, 7, 13, 15 and S5 is undefined when N = 0, 2, 8, 10 - S6 = 1 when N = 2, 6 and S6 is undefined when N = 0, 1, 4, 5, 8, 9, 12, 13 | | BA | | | | | |----|----|----|----|----|----| | | S3 | 00 | 01 | 11 | 10 | | | 00 | | | | | | DC | 01 | | | | | | DC | 11 | | | | | | | 10 | | | | | S3 = | 600 | BA | | | | | |-----|----|----|----|----|----| | | S4 | 00 | 01 | 11 | 10 | | | 00 | | | | | | DC | 01 | | | | | | DC | 11 | | | | | | | 10 | | | | | S4 = | 2 | 4 | | В | A | | |----|----|----|----|----|----| | | S5 | 00 | 01 | 11 | 10 | | 3 | 00 | | | | | | DC | 01 | | | | | | DC | 11 | | | | | | | 10 | | | | | S5 = | BA | | | | | | |----|----|----|----|----|--| | S6 | 00 | 01 | 11 | 10 | | | 00 | | | | | | | 01 | | | | | | | 11 | | | | | | | 10 | | | | | | S6 = DC Final Exam S1 2/4 ### Exercise 4 (7 points) For the whole exercise, write down the result only (do not show any calculation). Let us consider the two following expressions: $$S1 = (A + \overline{B} + C).(A + \overline{C}).(\overline{A} + \overline{B})$$ $$S2 = \overline{A}.(\overline{A} + \overline{BC}).(A.D + C) + \overline{A}.C$$ 1. Give the most simplified expressions of *S1* and *S2*. The result must be given as a sum of products (without parentheses). S1 = S2 = 2. Write down the minterm canonical form of *S1*. S1 = 3. Write down the maxterm canonical form of *S1*. S1 = 4. If A = 1, give the most simplified expression of S1. S1 = 5. Simplify the following expression by using the EXCLUSIVE-OR operator: $A + B.C.D + B.\overline{C.D}$ 6. Simplify the following expression by using the EXCLUSIVE-OR operator: B.C + \overline{A} .B + A. \overline{B} . \overline{C} Final Exam S1 3/4 ## $Computer\ Architecture-EPITA-S1-2021/2022$ | Feel free to use the blank space below if you need to: | | |--|--| Final Exam S1 4/4