Final Exam S1 Computer Architecture

Duration: 1 hr. 30 min.

_		_
Last name:	First name:	Group:
		_

Write answers only on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (2 points)

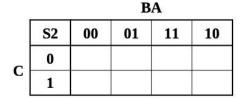
Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2 $\frac{2}{3}$).

Number to Convert	Source Form	Destination Form	Result
110111011.01101	Binary	Decimal	
A34.68	Hexadecimal	Decimal	
528	Decimal	Base 5	
375.25	Base 8	Hexadecimal	

Exercise 2 (5 points)

Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value.

Onevetion	Diagonal December	Decimal Value		
Operation	Binary Result	Unsigned	Signed	
10010111 - 10101101				
01010010 + 11001101				
00110110 - 10111100				
10010001 - 10000010				
01000111 + 01001100				


Final Exam S1 1/4

Exercise 3 (6 points)

For the whole exercise, the variables from *S1* to *S6* can be either 0 or 1. Complete the Karnaugh maps below (circles included) and give their most simplified expressions. **No points will be given to an expression if its Karnaugh map is wrong.**

- 1. Let us consider *N*, a 3-bit binary number (*C*, *B*, *A*). *A* is the least significant bit.
 - S1 = 1 when N = 1, 3, 4, 5
 - S2 = 1 when N = 0, 2, 4, 5, 6, 7

72			В	Α	
	S1	00	01	11	10
_ [0				
3	1				

$$S2 =$$

- 2. Let us consider *N*, a 4-bit binary number (*D*, *C*, *B*, *A*). *A* is the least significant bit.
 - S3 = 1 when N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15
 - S4 = 1 when N = 0, 1, 4, 6, 8, 9, 12, 14
 - S5 = 1 when N = 5, 7, 13, 15 and S5 is undefined when N = 0, 2, 8, 10
 - S6 = 1 when N = 2, 6 and S6 is undefined when N = 0, 1, 4, 5, 8, 9, 12, 13

	BA				
	S3	00	01	11	10
	00				
DC	01				
DC	11				
	10				

S3 =

600	BA				
	S4	00	01	11	10
	00				
DC	01				
DC	11				
	10				

S4 =

2	4		В	A	
	S5	00	01	11	10
3	00				
DC	01				
DC	11				
	10				

S5 =

BA					
S6	00	01	11	10	
00					
01					
11					
10					

S6 =

DC

Final Exam S1 2/4

Exercise 4 (7 points)

For the whole exercise, write down the result only (do not show any calculation).

Let us consider the two following expressions:

$$S1 = (A + \overline{B} + C).(A + \overline{C}).(\overline{A} + \overline{B})$$

$$S2 = \overline{A}.(\overline{A} + \overline{BC}).(A.D + C) + \overline{A}.C$$

1. Give the most simplified expressions of *S1* and *S2*. The result must be given as a sum of products (without parentheses).

S1 =

S2 =

2. Write down the minterm canonical form of *S1*.

S1 =

3. Write down the maxterm canonical form of *S1*.

S1 =

4. If A = 1, give the most simplified expression of S1.

S1 =

5. Simplify the following expression by using the EXCLUSIVE-OR operator: $A + B.C.D + B.\overline{C.D}$

6. Simplify the following expression by using the EXCLUSIVE-OR operator: B.C + \overline{A} .B + A. \overline{B} . \overline{C}

Final Exam S1 3/4

$Computer\ Architecture-EPITA-S1-2021/2022$

Feel free to use the blank space below if you need to:	

Final Exam S1 4/4