Key to Final Exam S1 Computer Architecture

Duration: 1 hr. 30 min.

Last name:	. First name:	Group:	

Write answers only on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (2 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2 $\frac{2}{3}$).

Number to Convert	Source Form	Destination Form	Result
110111011.01101	Binary	Decimal	443.40625
A34.68	Hexadecimal	Decimal	2612.40625
528	Decimal	Base 5	4103
375.25	Base 8	Hexadecimal	FD.54

Exercise 2 (5 points)

Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value.

Onevetien	Pinawy Decult	Decima	al Value
Operation	Binary Result	Unsigned	Signed
10010111 - 10101101	11101010	ERROR	-22
01010010 + 11001101	00011111	ERROR	31
00110110 - 10111100	01111010	ERROR	122
10010001 - 10000010	00001111	15	15
01000111 + 01001100	10010011	147	ERROR

Key to Final Exam S1

Exercise 3 (6 points)

For the whole exercise, the variables from *S1* to *S6* can be either 0 or 1. Complete the Karnaugh maps below (circles included) and give their most simplified expressions. **No points will be given to an expression if its Karnaugh map is wrong.**

- 1. Let us consider *N*, a 3-bit binary number (*C*, *B*, *A*). *A* is the least significant bit.
 - S1 = 1 when N = 1, 3, 4, 5
 - S2 = 1 when N = 0, 2, 4, 5, 6, 7

92		BA					
	S1	00	01	11	10		
_	0	0	1	1	0		
C	1	1	1	0	0		

$$S1 = \overline{C} \cdot A + C \cdot \overline{B}$$

		Dix					
	S2	00	01	11	10		
	0	1	0	0	1		
C	1	[1]	1	1	1		

BA

$$S2 = \overline{A} + C$$

- 2. Let us consider *N*, a 4-bit binary number (*D*, *C*, *B*, *A*). *A* is the least significant bit.
 - S3 = 1 when N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15
 - S4 = 1 when N = 0, 1, 4, 6, 8, 9, 12, 14
 - S5 = 1 when N = 5, 7, 13, 15 and S5 is undefined when N = 0, 2, 8, 10
 - S6 = 1 when N = 2, 6 and S6 is undefined when N = 0, 1, 4, 5, 8, 9, 12, 13

	BA				
	S3	00	01	11	10
D.C.	00	1	1	1	1
	01	1	1	1	_1_
DC	11	0	1	1	0
	10	0	1_	1	0

$$S3 = \overline{D} + A$$

		100	0.000	.00
S4	00	01	11	10
00	1	1	0	0
01	1	0	0	1
11	1_	0	0	1
10	1	1	0	0

BA

$$S4 = \overline{C.B} + C.\overline{A}$$

DC

	BA					
	S5	00	01	11	10	
	00	Ф	0	0	Ф	
DC	01	0	1	1	0	
DC	11	0	1	1	0	
	10	Φ	0	0	Ф	

$$S5 = C.A$$

		120-00-00				
	S6	00	01	11	10	
	00	Ф	Ф	0	1	
DC	01	Φ	Φ	0	1	
DC	11	Φ	Φ	0	0	
	10	Ф	Φ	0	0	

BA

$$S6 = \overline{D}.\overline{A}$$

Exercise 4 (7 points)

For the whole exercise, write down the result only (do not show any calculation).

Let us consider the two following expressions:

$$S1 = (A + \overline{B} + C).(A + \overline{C}).(\overline{A} + \overline{B})$$

$$S2 = \overline{A}.(\overline{A + BC}).(A.D + C) + \overline{A}.C$$

1. Give the most simplified expressions of *S1* and *S2*. The result must be given as a sum of products (without parentheses).

$$S1 = A.\overline{B} + \overline{B}.\overline{C}$$

$$S2 = \overline{A}.C$$

2. Write down the minterm canonical form of *S1*.

$$S1 = A.\overline{B}.C + A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.\overline{C}$$

3. Write down the maxterm canonical form of *S1*.

S1 =
$$(A + B + \overline{C}).(A + \overline{B} + C).(A + \overline{B} + \overline{C}).(\overline{A} + \overline{B} + C).(\overline{A} + \overline{B} + \overline{C})$$

4. If A = 1, give the most simplified expression of S1.

$$S1 = \overline{B}$$

5. Simplify the following expression by using the EXCLUSIVE-OR operator: A + B.C.D + B. $\overline{\text{C}}$. $\overline{\text{D}}$

$$A + B \cdot \overline{C \oplus D}$$

6. Simplify the following expression by using the EXCLUSIVE-OR operator: B.C + \overline{A} .B + A. \overline{B} . \overline{C}

$Computer\ Architecture-EPITA-S1-2021/2022$

Feel free to use the blank space below if you need to:	

Key to Final Exam S1 4/4