Key to Final Exam S1 Computer Architecture

Duration: 1 hr. 30 min.

Last name: \qquad First name: \qquad Group: \qquad

Write answers only on the worksheet.

 Do not show any calculation unless you are explicitly asked.
Do not use a pencil or red ink.

Exercise 1 (2 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $1 / 4$ or 2^{-2}).

Number to Convert	Source Form	Destination Form	Result
101111011.01001	Binary	Decimal	$\mathbf{3 7 9 . 2 8 1 2 5}$
2CD.48	Hexadecimal	Decimal	$\mathbf{7 1 7 . 2 8 1 2 5}$
750	Decimal	Base 6	$\mathbf{3 2 5 0}$
BB8.68	Hexadecimal	Base 8	$\mathbf{5 6 7 0 . 3 2}$

Exercise 2 (5 points)

Perform the following 8 -bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value.

Operation	Binary Result	Decimal Value	
		Signed	
$10000111+10101101$	00110100	ERROR	ERROR
$01010010-10001101$	11000101	ERROR	ERROR
$00110111+10111000$	11101111	$\mathbf{2 3 9}$	$\mathbf{- 1 7}$
$10000001-10000010$	11111111	ERROR	$\mathbf{- 1}$
$11000111-01101100$	01011011	$\mathbf{9 1}$	ERROR

Exercise 3 (5 points)

Amongst the great variety of binary encoding techniques, there is the 2421 code. In this code, the weights of the binary digits are $2,4,2,1$, instead of $8,4,2,1$. Therefore, several binary patterns are possible for some decimal numbers. For instance, the encoded value of 5_{10} can be either 0101 or 1011 . Furthermore, the encoded value of 9_{10} is made up of four ones: 1111. It means that, with four bits, no value greater than 9_{10} can be encoded in 2421 code (unlike the 8421 natural binary form, where values from 0_{10} to 15_{10} can be encoded).

The Aiken code is a kind of 2421 code:

- The encoded values from 0 to 4 in Aiken code are identical to the encoded values from 0 to 4 in BCD code.
- The encoded values from 5 to 9 in Aiken code are identical to the encoded values from 11 to 15 in natural binary code.

We want to design a circuit that converts a 4-bit natural binary code (DCBA) into its 4-bit Aiken code (D'C’B'A'). Complete the following truth table and the Karnaugh maps below (draw also the circles). Then, give the most simplified expression for each output. When a solution is obvious, you do not have to complete its associated Karnaugh map. As a reminder, an obvious solution does not have any logical operations apart from the complement (for instance: $\mathrm{A}^{\prime}=1, \mathrm{~A}^{\prime}=\overline{\mathrm{A}}$).

\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}^{\prime}
0	0	0	0	0	0	0	0
0	0	0	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
0	0	1	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
0	0	1	1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
0	1	0	0	0	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
0	1	1	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
1	0	0	0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
1	0	0	1	1	1	1	1

DC

D'	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	0	0
$\mathbf{0 1}$	0	1	1	1
$\mathbf{1 1}$	Φ	Φ	Φ	Φ
$\mathbf{1 0}$	1	1	Φ	Φ

$$
\mathbf{D}^{\prime}=\mathbf{D}+\mathbf{C} . \mathbf{A}+\mathbf{C} . \mathbf{B}
$$

DC

\mathbf{C}	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	0	0
$\mathbf{0 1}$	1	0	1	1
$\mathbf{1 1}$	Φ	Φ	Φ	Φ
$\mathbf{1 0}$	1	1	Φ	Φ

$$
\mathbf{C}^{\prime}=\mathbf{D}+\mathbf{C} \cdot \overline{\mathbf{A}}+\mathbf{C} \cdot \mathbf{B}
$$

BA

DC | \mathbf{B} | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 0 | 0 | 1 | 1 |
| $\mathbf{0 1}$ | 0 | 1 | 0 | 0 |
| $\mathbf{1 1}$ | Φ | Φ | Φ | Φ |
| $\mathbf{1 0}$ | 1 | 1 | Φ | Φ |

$\mathbf{B}^{\prime}=\mathbf{D}+\overline{\mathbf{C}} \cdot \mathbf{B}+\mathbf{C} \cdot \overline{\mathbf{B}} \cdot \mathbf{A}$

BA						
\mathbf{A} $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$						

$\mathbf{A}^{\mathbf{\prime}}=\mathbf{A}$

Exercise 4 (5 points)

For the whole exercise, write down the result only (do not show any calculation).
Let us consider the two following expressions:
$\mathrm{S} 1=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$
$\mathrm{S} 2=\overline{\overline{\mathrm{A}} \cdot \mathrm{B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{C}}}$

1. Give the most simplified expressions of $S 1$ and $S 2$. The result must be given as a sum of products (without parentheses). Do not simplify by using the EXCLUSIVE-OR operator.
```
S1 = A.C + A.\overline{B}+\overline{\textrm{A}}\cdot\textrm{B}\cdot\overline{C}
```

$\mathrm{S} 2=\mathrm{A}+\overline{\mathrm{B}} . \mathrm{C}$
2. Simplify S1 by using the EXCLUSIVE-OR operator.
$\mathrm{S} 1=\mathrm{A} \oplus(\mathrm{B} . \overline{\mathrm{C}})$
3. Write down the maxterm canonical form of S1.
$S 1=(A+B+C) \cdot(A+B+\bar{C}) \cdot(\bar{A}+\bar{B}+C) \cdot(A+\bar{B}+\bar{C})$
4. Write down the minterm canonical form of S2.
$\mathrm{S} 2=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$

Exercise 5 (3 points)

Perform the operations below. Show all calculations.

Base 2														Base 16							
	1	0	0	1		1	1		0		0		0				4	8	A	6	
-		1	0	1		0	0		0		1		1		+		E	5	C	7	
		1	0	0		1	0		1		0		1			1	2	E	6	D	
Base 2: tw	d	at		poin																	
	1	1	1	0	1		0	1		0		1	0		0	0					
-	1	0	0	0								1	1		1	0	1	-	0	1	
		1	1	0	1																
	-	1	0	0	0																
			1	0	1		0														
		-	1	0	0		0														
					1		0	1		0											
				-	1		0	0		0											
								1		0		0	0								
							-	1		0		0	0								
													0								

Feel free to use the blank space below if you need to:

