
Algorithmics

Final Exam #1 (P1)

Undergraduate 1st year S1

Epita

9 Jan. 2018 - 10 : 00

Instructions (read it) :

✷ You must answer on the answer sheets provided.

– No other sheet will be picked up. Keep your rough drafts.

– Answer within the provided space. Answers outside will not be marked: Use your drafts!

– Do not separate the sheets unless they can be re-stapled before handing in.

– Penciled answers will not be marked.

✷ The presentation is negatively marked, which means that you are marked out of 20 points and the
presentation points (maximum of 2) are taken off this grade.

✷ Code:

– All code must be written in the language Python (no C, Caml, Algo or anything else).

– Any Python code not indented will not be marked.

– All that you need (types, routines) is indicated in the appendix (last page)!

✷ Duration : 2h

1



Algorithmics
Final Exam #1 (P1) – 9 Jan. 2018 - 10 : 00

Undergraduate 1st year S1
Epita

Exercise 1 (Stack or queue? – 2 points)

Values A, B, C, D, E and F are inserted, in this order, into an empty linear data structure. Indicate,
for each output order given on the answer sheets, whether the structure in question may be: a stack, a
queue (it can be both), or neither (neither a stack nor a queue).

Exercise 2 (Binary Search – 3 points)

Here we use a version of the binary search algorithm that stops when bounds intersect or
become equal.

1. Complete the decision tree learning of a binary search on a 16-element list. Each node represents a
range of search (left and right bounds) and the medium rank.

2. (a) Let a list containing 32768 elements be sorted in increasing order. How many element compar-
isons will be done, in worst case, in case of a negative search (integer answer)?

(b) Let k be the answer to the previous question. Which length, at most, can the list have in order
to cause k + 2 comparisons in case of a negative search?

Exercise 3 (Algo → Python – 3 points)

Let the function test, that uses operations of abstract type Iterative list, be defined as follows:

function test(List L) : boolean

variables
integer i

boolean b

begin
b ← true

i ← 1

while i < length(L) do
if nth(L, i) > nth(L, i+1) then

b ← false

end if
i ← i + 1

end while
return b

end

1. What does the function test do?

2. Write a Python version of the function test that is possibly more optimized than the Algo version
shown above.

Exercise 4 (Minimaxi – 3 points)

Write a function that searches for the minimum and the maximum values in an integer list.
It returns the positions in the list of the searched values.

Application examples:

1 >>> posMiniMaxi ([1, 8, -2, 9, 12, -5, 0, 25, 12])

2 (5, 7)

3 >>> posMinimax ([8, 5, 8, 5, 8])

4 (1, 0)

5 >>> posMinimax ([])

6 ...

7 Exception: empty list

2



Algorithmics
Final Exam #1 (P1) – 9 Jan. 2018 - 10 : 00

Undergraduate 1st year S1
Epita

Exercise 5 (Merge sort (Tri fusion) – 2,5 + 5 + 2,5 points)

1. Write the function partition that splits a list into two (new) lists of almost identical lengths: one
half in each list.

Application examples:

1 >>> partition ([15, 2, 0, 4, 5, 8, 2, 3, 12, 25])

2 ([15, 2, 0, 4, 5], [8, 2, 3, 12, 25])

3 >>> partition ([5, 3, 2, 8, 7, 1, 5, 4, 0, 6, 1])

4 ([5, 3, 2, 8, 7], [1, 5, 4, 0, 6, 1])

2. Write the function merge that merges two lists, sorted in increasing order, into one new sorted list.

Application example:

1 >>> merge ([1,5,8], [2,3,4,8])

2 [1, 2, 3, 4, 5, 8, 8]

3. To sort a list L, we proceed (recursively) as follows:

⊲ A list of length < 2 is sorted.

⊲ A list of length ≥ 2:

– the list is split into two lists L1 and L2 of almost identical lengths;

– the two lists L1 and L2 are sorted recursively;

– finally, the two lists L1 and L2 are merged into one sorted list.

Use the two previous functions (written or not) to write the function mergesort that sorts a list in
increasing order (not "in place": the function builds and returns a new list.)

Application example:

1 >>> mergesort ([5,3,2,8,7,1,5,4,0,6,1])

2 [0, 1, 1, 2, 3, 4, 5, 5, 6, 7, 8]

Appendix: Authorised functions and methods

You can use the method append and the function len on lists:

1 >>> help(list.append)

2 Help on method_descriptor: append (...)

3 L.append(object) -> None -- append object to end of L

4

5 >>> help(len)

6 Help on built -in function len in module builtins: len (...)

7 len(object)

8 Return the number of items of a sequence or collection.

You can also use the function range and raise to raise exceptions. Reminder:

1 >>> for i in range (10):

2 ... print(i, end=’ ’)

3 0 1 2 3 4 5 6 7 8 9

4

5 >>> for i in range(5, 10):

6 ... print(i, end=’ ’)

7 5 6 7 8 9

8

9 >>> raise Exception("blabla")

10 ...

11 Exception: blabla

3


